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ABSTRACT
We investigate the properties of five mathematical models used to
represent the growth of a single population. By imposing a common
set of (normalizing) initial conditions, we are able to calculate and
explicitly compare the time intervals required to reach specific values
of population levels. Based on these results, we conclude that one
must be careful when applying thesemodels to interpret the dynam-
ics of single-populationgrowth. Anadditional implication is that they
provide evidence that such caution should also be extended to the
incorporation of these models into the formulation of interacting,
multi-population models, which are used, for example, to study the
spread of disease.
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1. Introduction

The purpose of this paper is to discuss five models of single-population growth, with a
particular emphasis on the length of time each takes to reach specific population levels. A
reason for carrying out this study is to see what differences exist with regard to this fea-
ture for the models. However, a more important issue is what exactly happens when these
different models are, respectively, used in more complex interacting population systems. If
the individual single-population models greatly differ in the properties of their solutions,
then it might be expected that their inclusion, as sub-systems in interacting systems [1, 4,
6], might lead to substantial changes in the prediction of the population levels at some time
t. This issue shall not be taken up in this paper, but will appear in a future work.

The single-populationmodels, considered here, belong to the class ofmathematical rep-
resentations which depend on two parameters. If we let x(t) be the population at time, t,
and denote the two parameters as (a, b), then the population dynamics is given by the
relation

dx
dt

= F(a, b, x), (1)

where (a, b) are positive. We also restrict F(a, b, x) such that

x(0) = x0 > 0 ⇒ x(t) > 0, t > 0. (2)

CONTACT Ronald E. Mickens rohrs@math.gatech.edu

© 2015 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is anOpenAccess article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



96 R. E. MICKENS

Given a function F(a, b, x), our basic methodology is to first determine the solution x(t),
and then calculate the times it takes to reach specific population levels. The comparisons
will be among the times it takes each model to achieve a given population value.

The paper is organized as follows. Section 2 presents the five single-population models
and gives references to their origin and/or detailed discussions of their formulations and
applications. In Section 3, we provide a set of initial conditions, to be applied to eachmodel
differential equation, such that the relevant solutions may be directly compared with each
other. This allows the direct expression of the particular parameters, (a, b), of a givenmodel
to be expressed in terms of the initial conditions. Remarkably, the exact solutions to each
of the single-population differential equations can be calculated and these are presented in
Section 4. Section 5 gives the results for TN , where TN is the time taken for the population
to reach the value x = N, that is, x(TN) = N. Finally, we end the paper with a discussion
of the essential results, several general comments, and possible extensions of our current
work.

2. Five single-populationmodels

We consider five single-population models listed below, along with some brief comments
and references to their origins. Several of them are widely used not only as models
for single-population growth, but also as representations of sub-populations in systems
containing the interactions among multi-populations [1, 4, 6].

In thework to follow, all parameters are assumed to be positive and independent of time.
Model A: Perhaps the simplest of the models is that given by the expression

dx
dt

= � − μx. (3)

While it is widely used in multi-population interacting systems [1, 4, 6], it generally has
validity only for situations where one has control over the introduction of newmembers of
the population. An example of the ideal case for this type of equation is in the modelling
of chemostat-related phenomena [7].

Model B: One of the best-known models is the logistic equation [6, 15],

dx
dt

= a1x − b1x2. (4)

There are many single-population systems for which its solutions provide an accurate
representation of the experimental data [6, 15].

Model C: The so-called combustion equation is

dx
dt

= a2x2 − b2x3. (5)

The full details of the interesting mathematical features of its solutions are given in the
book by O’Malley [13].

Model D: All of the previous differential equation models have polynomial functions
on their right sides. Another possible single-population model which does not have this



JOURNAL OF BIOLOGICAL DYNAMICS 97

feature is
dx
dt

= a3
√
x − b3x. (6)

This representation is based on previous work by Mickens [11] related to travelling wave
solutions for a nonlinear reaction–diffusion partial differential equation.

Model E: Similarly, a second non-polynomial model is

dx
dt

= a4x Ln
(
b4
x

)
. (7)

This is the Gompertz equation and has been used extensively to represent the growth of
tumours [16].

Inspection of Equations (3)– (7) allows the following conclusions to be reached:

(i) Each of the models depend on just two, a priori, unknown parameters.
(ii) Except for Model A, all the related differential equations have two fixed-points or

constant solutions, one at x(t) = 0, a second at x(t) = x∞, where the (constant) x∞
varies from model to model.
In general, we expect the ‘axiom of parenthood’ [9] to hold. Mathematically, this
implies that in Equation (1), the function F(a, b, x) has the property

F(a, b, 0) = 0. (8)

If we rigorously enforce this condition, then Model A would be immediately elimi-
nated. However, as stated above, Model A is to be kept since it is used so widely in the
construction of interacting population models [1, 4, 6].

(iii) As will be shown, in the next section, exact solutions may be calculated for all five
models [5, 12, 14].

(iv) Using standard results from calculus and differential equations [3, 12, 14], the solu-
tions to all five models have the following property. If x(0) = x0 is selected such
that

0 < x0 < x∞, (9)

then x(t) increases monotonically to the value x∞.

3. Methodology

To compare the time evolution properties of the five single-population models, an a priori
set of mathematical conditions must be selected and all of the models must be required to
satisfy these requirements. We call these requirements ‘normalization conditions’.

For our investigations, (x0, x∞, ẋ0) are taken to be the same for the five models. These
three quantities are defined as follows:

Initial population: x0 = x(0),

Limiting population: x∞ = Lim
t→∞ x(t),

Initial birth rate:
dx
dt

∣∣∣∣
t=0

= ẋ0.

(10)
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The basic methodology is to solve each mathematical model, ẋ = F(a, b, x), for its
solution, x(a, b, t), and then use the relations

F(a, b, x∞) = 0, ẋ0 = F(a, b, x0) (11)

to express (a, b) in terms of (x0, x∞, ẋ0).

4. Exact solutions

All of the five single-population differential equations can be solved exactly, although, for
one case, the solution is implicit. In the calculations to follow, we only provide a brief out-
line of the procedure for determining the various solutions and give references to where
the full details may be found. In most cases, only an elementary knowledge of calculus and
differential equations are needed to derive the required solutions.

Model A: ẋ = � − μx. The differential equation and general solution are given, respec-
tively, by the expressions [5, 12, 14]

dx
dt

= � − μx, (12a)

x(t) =
(

�

μ

)
−

(
�

μ
− x0

)
e−μt . (12b)

Imposing the conditions in Equation (11) gives

� − μx∞ = 0, ẋ0 = � − μx0 (13)

and solving for (�,μ) produces the result

� = ẋ0x∞
x∞ − x0

, μ = ẋ0
x∞ − x0

. (14)

Therefore, the model differential equation and solution are given by the following

dx
dt

=
(

ẋ0
x∞ − x0

)
(x∞ − x), (15a)

x(t) = x∞ − (x∞ − x0) exp
[
−

(
ẋ0

x∞ − x0

)
t
]
. (15b)

Using a similar set of procedures, the calculations for the other single-population
models may be completed. Only the final results will be given for the remaining models.

Model B: ẋ = a1x − b1x2. For this case, we have

a1 = ẋ0x∞
x1(x∞ − x0)

, b1 = ẋ0
x0(x∞ − x0)

(16)

and

dx
dt

=
[

ẋ0
x0(x∞ − x0)

]
x(x∞ − x), (17a)

x(t) = x0x∞
x0 − (x∞ − x0) exp(−a1t)

. (17b)
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Model C: ẋ = a2x2 − b2x3. This ordinary differential equation has an exact solution
expressible in terms of the Lambert-W function [3]. However, a direct calculation, using
the method of partial fractions [12, 14], gives the implicit solution

t =
[
x20(x∞ − x0)

ẋ0x∞

](
1
x0

− 1
x

)
+

[
x20(x∞ − x0)

ẋ0x2∞

]
· Ln

[(
x∞ − x0
x∞ − x

) (
x
x0

)]
. (18)

Model D: ẋ = a3
√
x − b3x. This differential equation can be transformed into a linear

equation by means of the dependent variable change, x = u2. Solving the resulting differ-
ential equation, transforming back to x, and expressing (a3, b3) in terms of (x0, x∞, ẋ0)
gives the following results:

dx
dt

=
[

ẋ0√
x0

(√
x∞ − √

x0
)
]

√
x
(√

x∞ − √
x
)
, (19a)

x(t) =
{

√
x∞ − (√

x∞ − x0
)
exp

[
− ẋ0t
2
√
x0

(√
x∞ − √

x0
)
]}

. (19b)

Model E: ẋ = a4x Ln(b4/x). This equation is the Gompertz model for single-population
growth [16]. It and its exact solution may also be expressed in terms of (x0, x∞, ẋ0); they
are given by the forms

dx
dt

=
(
ẋ0
x0

) ⎡
⎣ 1

Ln
(
x∞
x0

)
⎤
⎦ x Ln

(x∞
x

)
, (20a)

x(t) = x∞ exp
{[

Ln
(
x0
x∞

)]
e−a4t

}
, (20b)

where a4 is

a4 =
(
ẋ0
x0

) [
1

Ln(x∞/x0)

]
. (21)

5. TN values

Close examination of the solutions to the five models shows that they all can be rewritten
as follows:

t = H(x0, x∞, ẋ0, x), (22)

that is, t is a given function, H, of the indicated variables.
Our comparison criterion consists of selecting a particular set of (reasonable?) numeri-

cal values for the parameters (x0, ẋ0, x∞), and then determine the time for each population
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Table 1. Times to achieve population N for each model.

Modela

TbN A B C D E

T200 10.1 6.96 5.02 8.48 7.51
T1000 94.4 23.7 9.47 49.5 31.9
T2500 276 34.6 9.85 106 55.3
T5000 676 45.5 10.2 202 87.2
a The letters refer to one of the five models.
b The times are in years.

model to achieve this value. Thus, if the value N is chosen for x, the corresponding, TN , is

TN = H(x0, x∞, ẋ0,N). (23)

For our analysis, we selected the following values,

x0 = 102, x∞ = 104, ẋ0 = 10/year (24)

that is the initial, starting population is composed of 102 individuals, the limiting or max-
imum population is 104 individuals, and the initial (t = 0) birth rate is 10/year. From this
choice, we see that the time unit is the year, and the initial population is 1%of themaximum
population.

The calculation of the TN , the time in years to achieve a population of N individuals
is straightforward to determine and are listed in Table 1. For N, we selected the values,
N : 200; 1000;2500.

Inspection of Table 1 allows the following conclusions to be reached:

(a) The time for the population to double from its initial value of 100 is essentially the
same for all the models. They range from a low of about 5 years to a high of 10 years.

(b) Model C has the most rapid increase of any of the models, achieving a population
level of approximately 50 times its initial value in 10 years. This is a general property
of combustion-type models [13].

(c) The slowest model to reach a given level of population size is Model A.
(d) The logistic equation is the second fastest model, although it takes approximately four

times as much in comparison with the combustion equation, Model C.
(e) If we consider just the three standardmodels, for single-population growth (Models A,

B, and E), then expressed in terms of the time to reach a particular level of population,
they can be ranked as follows:

Model B → Model E → Model A,

where Model B is the fastest and A is the slowest.

In summary, we may conclude that the five single-population models considered in this
study have a wide range of dynamic times associated with the evolution of their respective
populations.

Another, somewhat related issue is the intrinsic time scales associated with the mathe-
maticalmodelling of a systemby ordinary differential equations. These intrinsic time scales
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Figure 1. Comparison of intrinsic time scales for the five models. The horizontal scale is time (years).

are calculated by combining powers of the system parameters and the initial conditions in
ways such that the new quantities have the physical unit of time [8, 10]. In general, it is
expected that these scales will provide useful information and insights into the duration of
important dynamic features of the system. However, for ‘complex’ systems or systems hav-
ing many intrinsic time scales, it can be a daunting task to interpret the actual significance
of the various time scales.

We now calculate the intrinsic time scales for each of the five single-population models.
Their numerical values are evaluated using the parameters listed in Equation (24). How-
ever, the explicit determination of the time scales will only be illustrated for Model A.
Figure 1 presents the numerical values of these scales for all models.

For Model A, there are five parameters to consider: �, μ, x0, x∞, and ẋ0. Denoting the
physical dimensions of a quantity Q by [Q], we have

[x] = #, [t] = T, (25)

where # and T have the units of population number and time. Therefore, it follows that

[�] = #T−1, [μ] = T−1,

[x0] = #, [x∞] = #, [ẋ0] = #T−1.
(26)

From these results, the four possible intrinsic time scales are

T1 = 1
μ

=
(
x∞ − x0

ẋ0

)
, (27a)

T2 = x0
�

=
(
x0
x∞

) (
x∞ − x0

ẋ0

)
, (27b)

T3 = x∞
�

=
(
x∞ − x0

ẋ0

)
, (27c)

T4 =
√
x0x∞
�

=
√

x0
x∞

(
x∞ − x0

ẋ0

)
, (27d)
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Inspection of these relations shows that the following inequalities hold

T1 = T3, T2 � T1, T2 < T4,

T2 < T4 < T1,
(28)

under the condition 0 < x0 � x∞.
One interesting fact should be indicated. Of all fivemodels, only the Gompertz equation

has a single, fundamental intrinsic time scale and it is given by

T = x0 Ln(x∞/x0)
ẋ0

. (29)

A detailed examination of Figure 1 allows the following conclusions to be reached.

(1) All five models exhibit short-time dynamics characterized by time scales in the range
of approximately 10–50 years. For Models A, B, C, and D, this value is essentially 10
years.

(2) Three of the Models (A, B, D) have an intermediate intrinsic time scale in the interval
90–100 years.

(3) OnlyModels (A, B, C) have long-time dynamics characterized by intrinsic time scales
of 990 years.

(4) As noted previously, the combustion model has fast dynamics, that is, it achieves a
population value near its maximum value quickly, in the order of several 10s of years.

(5) Inspection and comparison of the results given in both Table 1, and Figure 1 does not
allow any easy conclusions to be drawn as to possible relations or connection between
the TN values and the magnitudes of the intrinsic time scales.

6. Conclusions

The results of this paper show that for the particular five single-population models we
have studied, while there are certain overall regularities, in general, any two given models
may have major differences in the numerical values for the times to achieve a given level
of the population; see Table 1. Consequently, we should be very cautious in our use of
these models when they are incorporated within the (mathematical) structure of complex
interacting population models. It should not be assumed that for a given sub-population
each of the single-population models given here are interchangeable. In other words, the
populations growth dynamics ‘. . . greatly affects model outcomes, and alternative model
structures can result in very different predicted effects . . . ’ [2].

In a future paper, we will present results related to the issues of the current paper, but
investigated within the context of three parameter, single-population models. Two explicit
examples are

dx
dt

= a1x(K1 − x)
1 + b1x2

(30)

and
dx
dt

= a2x1+p Ln
(
K2

x

)
, (31)

where all the indicated parameters are positive.
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