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Abstract. We present and analyze a new derivation of the meso-level behavior of a discrete microscopic

model of heat transfer. This construction is based on the principle of dynamic consistency. Our work

reproduces and corrects, when needed, all the major previous expressions which provide modifications to

the standard heat PDE. However, unlike earlier efforts, we do not allow the microscopic level parameters

to have zero limiting values. We also give insight into the difficulties of constructing physically valid heat

equations within the framework of the general mathematically inequivalent of difference and differential

equations.

1. Introduction

The purpose of this paper is to examine the meso-scale limit of a discrete micro-level mathematical

model constructed to represent simple heat transfer. The creation of the microscopic model is based on the

application of the principle of dynamic consistency (Mickens (2005, 2015, 2021)). Under the appropriate

mathematical assumptions, we are able to obtain the previous results of Maxwell (1867), Cattaneo (1948),

and Vernotte (1958) regarding the replacement of the standard heat equation

(1) ut = Duxx,

by the generalization

(2) τutt + ut = Duxx,

where D is the temperature diffusion constant, τ is a time-lag parameter, and

ut =
∂u

∂t
, utt =

∂2u

∂t2
, ux =

∂u

∂x
, uxx =

∂2u

∂x2
.

Note that (x, t) are the one-dimensional space and time independent variables, and u = u(x, t) is defined

over appropriate intervals of (x, t) with suitable boundary conditions and initial values. The need for a

generalization of Eq. (1) comes from the fact that the solutions of Eq. (1) transmit information at an infinite

speed (Ali et al. (2005); Christov et al. (2005); Dreher et al. (2009); Guyer et al. (1966); Joseph et al.

(1989)), a condition which violates the principle of causality (Ali et al. (2005); Christov et al. (2005);

Dreher et al. (2009); Guyer et al. (1966); Joseph et al. (1989)).

For convenience, we now provide a resume of our major results:
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DYNAMIC CONSISTENCY

(i) Based on our formulation of the discrete mirco-level model, the drived first modified form of the

standard heat PDE has the mathematical structure

(3) ε1utt + ut = Duxx + (ε2D)uxxxx.

where (ε1, ε2) are non-negative parameters.

(ii) Finite-order approximate models of discrete micro-level models can never be “exact.” By this, we

mean that the meso-level equations will always require knowledge of certain properties of the solutions

which in practice and/or theoretically can not be experimentally measured.

This paper is organized as follows: Section 2 provides a brief historical summary of work on the standard

heat PDE, its major defect, and previous attempts to resolve the associated issue. It also includes several of

the mathematical models put forth to solve the causality problem and discusses why they all have failed in

this quest. Section 3 gives several general comments on the modeling process and introduces the concept of

dynamic consistency. In Section 4, we use dynamic consistency to construct perhaps the simplest discrete

mathematical model for heat conduction; it corresponds to a generalized random walk model. We take this

to be our micro-level model. In Section 5, we show that by using a Taylor series expansion, a meso-level

hybrid difference-differential equation is obtained. Special cases of this equation includes all previous cases

of the modified standard heat equation. Finally, in Section 6, we summarize our major conclusions and

provide reasons why the usual methods for generalizing the heat PDE may never produce valid results.

A last comment. We have not tried to reference every relevant publication on the subjects of this work.

Such references are generally well known by active researchers in these areas and are readily accessible. This

view is consistent with the fact that the current article is not a review paper.

2. Preliminaries

Elementary heat conduction phenomena have been modeled by for approximately 150 years by the linear

partial differential given in Eq. (1). However, this PDE has associated with it two difficulties. First, Eq. (1)

allows for the transformation of information between two separate space points with infinite speed (Joseph

et al. (1989)). Second, this PDE does not provide a valid or accurate model for many heat conduction

problems arising in a broad range of scientific and engineering situations (Dreher et al. (2009); Guyer et al.

(1966); Joseph et al. (1989)). As a result of the existence of these issues, there has been a large research

effort to resolve and/or explain these issues; see for example (Ali et al. (2005); Christov et al. (2005);

Dreher et al. (2009); Guyer et al. (1966); Joseph et al. (1989)).

In general, the modifications to Eq. (1) have included adding a second-derivative term in time. The

simplest such model is the Maxwell-Cattaneo representation (Maxwell (1867); Cattaneo (1948); Vernotte

(1958)),

(4) τutt + ut = Duxx

where the constant, positive parameter τ is given the interpretation of a delay or lag time. Note that this

PDE has exactly the same mathematical structure as the damped wave equation (Ali et al. (2005); Guyer

et al. (1966); Maxwell (1867)). Note that since the dependent variable, u(x, t), represents the temperature

as measured with respect to the absolute Kelvin scale, then only solutions satisfying the condition

(5) u(x, t) ≥ 0, t ≥ 0,

are physically meaningful. Inspection of Eq. (4) shows that it is a hyperbolic PDE and, as a consequence,

can produce negative valued solutions. So this is a difficulty that must be overcome. However, Eq. (4) does
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resolve the issue of infinite speed for information transfer. We expect this speed to be approximately

(6) c =

√
D

τ
.

Other modifications of Eq. (1) produce the linear PDE

τutt + ut = Duxx +D1uxxt,

where (τ,D,D1) are non-negative, constant parameters; see, for examples, the paper of Guyer et al. (1966).

Here, the issues also include whether the data can actually be measured to obtain the appropriate initial

and boundary conditions.

Our analysis of these modified heat equations leads us to the conclusion that these efforts have no fun-

damental groundings in an overall consistent physical theory. Further, they are related to other efforts

involving the examination of macroscopic limits of microscopic mathematical models (Abeyaratne (2014);

Ascher (2020)) and the validity of expansions in a (supposedly) small parameter (Mazanov et al. (1974)).

An accurate, but colorful way of characterizing this situation is to look at it from the perspective of a “wack-

a-mole” situation where the things required to resolve one issue provides the opportunity for the creation of

another unresolved issue.

3. Modeling and dynamic consistency

A mathematical model of a system is a symbolic representation incorporating some aspects of its properties

and features. These aspects concern properties and important features of immediate interest to the modeler

and the relevant scientific community. However, it must not be forgotten that a mathematical model, in

general, can never capture all aspects and details of a system. This is because at a given moment, no

realistic system has all of its properties known and as a consequence, the unknown ones can not be included

in the model. Further, even if a particular feature or aspect of a system is known, the currently available

mathematical structures may not be able to incorporate them in an appropriate and viable model.

In the next Section we present arguments which form the bases for the construction of a discrete mi-

croscopic model of heat conduction in one-space dimension. Our dependent variable, u, represents the

temperature measured on the absolute Kelvin scale. This model will be derived by using the principle of

dynamic consistency (Mickens (2005, 2021)). We now provide a concise definition of dynamic consistency

and explain how it may be applied to the construction of mathematical models.

Definition 3.1. Consider two systems, S1 and S2. Let S1 have some property, P . If S2 also has property

P , then S2 is said to be dynamically consistent to S1 with respect to property P .

Observe that the systems can be essentially anything. An explicit example is where S1 is a differential

equation and S2 is a discretization of S1. The case where S2 is a finite-difference discretization has been

extensively studied within the context of the “nonstandard finite differences” methodology (Mickens (2005,

2021)).

Another example is where S1 is a physical system and S2 is a mathematical model of S1. For this case,

P might include any or all of the following features (Mickens (2005)):

(i) the dependent variables are non-negative

(ii) the dependent variables are bounded

(iii) conservation laws exist

(iv) the dependent variables have special asymptotic behaviors.

Note that the mathematical model may not have all of the properties P . This is a general consequence

of the modeling process. Again, considering the situation where S1 is a differential equation and S2 its
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discretization, then numerical instabilities may occur in the equations of discretizations (Mickens (2005,

2021)).

Since the major goals of mathematical modeling are to provide an understanding of the system, help

to make valid predictions of the evolution of the physical system, and otherwise provide insights into the

fundamental nature of the system, we must be thoughtful in our construction of such models. In particular,

we must always be aware that the results of mathematical modeling depend strongly on the mathematical

structures we use to create the models. An insightful example is the modeling of single-population systems

where discrete models give solution behaviors entirely different from those provided by differential equations

(Mickens (2015)).

Another difficulty in creating mathematical models is to take as exact particular functional forms which

are based on experimental results valid only at low concentrations, or a limited range of temperatures, etc.

A prime illustration of this is Fick’s law for heat conduction (Dreher et al. (2009); Joseph et al. (1989)).

Finally, we give a concise summary of the dynamic consistency methodology for constructing mathematical

models of a system:

(a) Understand and analyze the system as fully possible;

(b) from (a), list the major properties and constraints that should be incorporated into the model;

(c) using a particular mathematical structure (difference equations, differential equations, integral equations,

etc.), construct a mathematical model that includes as many as possible of the features and/or items

listed in (b).

Note that different mathematical models will arise from the effort to include some, all, or a separate set of

properties of the system and its associated constraints, such as symmetries and conservation laws. In general,

the application of the dynamic consistency methodology does not yield a unique mathematical model (Lax

(1954); Mickens (2005)], and often this ambiguity can be used to our advantage. It should be clear that the

inclusion of an increasing number of dynamic, consistent properties should yield better mathematical models.

However, the modeler may not, in general, know all the important properties of a system. This implies that

it is unlikely that the modeling process will generate equations that are “exact,” either mathematically or

physically.

In the next section, we apply the dynamic consistency methodology to the issue of constructing a discrete

microscopic level model for simple heat conduction.

4. A discrete microscopic level model

Before proceeding to construct the microscopic level model equation, we need to provide some brief

comments on several topics.

First, we assume that it makes sense to divide the physical universe into three separate relevant domains

in terms of space-time characterization. This is depicted in Fig. (1) and Table (1). The smallest or lowest

level is where the atomic structure of matter dominates our understanding of physical systems. The top

level, sometimes called the continuum limit, is where macro-scale phenomena is often observed, measured,

and interpreted. Generally, at this level, the graininess of the atomic aspects of matter does not play an

important role. Finally, the meso-level corresponds to considering an a priori atomic system, but averaged

over its atomic distinctness to produce variables that have macroscopic meaning.

Second, we associate with each of the three levels characteristic time and space physical scales; see Fig. (1).

and Table (1). Thus, (ta, xa) are constant parameters associated with the evolution of the system dynamics

at the micro-level; (δt, δx) are the constant parameters associated with physical phenomena at the meso-

level; and (T ∗, L∗) are the time and length scales for what occurs at the macro-level. Relations between

their magnitudes are indicated in Fig. (1) and Table (1).
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Figure 1. Ordering of time and space scales

Table 1. Definition of time and space related variables

urs ukm u(x, t)

tr = ta · r tk = δt · k (x, t) continuous

xs = xa · s xm = δx ·m
r = 0, 1, 2, . . . k = 0, 1, 2, . . .

s = integers m = integers

Our main purpose is to construct a discrete space-time model for the micro-level and then extend it to

the meso-level. Next, we examine the meso-level model and interpret it as a modified or corrected version

of what is usually considered to be a mathematical model for the continuum limit.

The space and time variables at the micro-level are discrete and are defined in Fig. (1) and Table (1).

We show that the derived meso-level evolution equation has to be considered a hybrid differential-difference

equation. This we explain below. Note that tr and xs are discrete time and space variables. The discrete

meso-scale variables and their relationship to the continuum variables (t, x) will also be clarified later.

To proceed in the derivative of a discrete micro-level model for heat conduction in one-dimension, we

assume that our mathematical model satisfies the following conditions:

(A) be a linear difference equation,

(B) satisfy the constraint that information can only travel with a finite speed in the discrete space-time;

(C) be invariant under the parity transformation; i.e., the discrete equation should not change its form

under the interchange

(7) (s+ i) ←→ (s− i), s = integer, i = 1, 2, 3, . . . .

(D) not be invariant under time inversion;

(E) satisfy a non-negativity condition for its solutions;

(F) possess the property of measurability.

The following is a brief discussion of the implications of these requirements:

(A1) Assuming that the micro-level equation is linear provides a great simplification in that there are

many more possible nonlinear equations and, generally, we have no clue as to which one(s) to select.

(B1) The micro-level is characterized by the time scale to ta and the space scale to xa. Therefore, the

speed of information flow, c, will be

(8) c =
xa
ta

(C1) For a discrete equation the condition given by Eq. (7) ensures parity conservation (Mickens (2005)).

5
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(D1) The simplest way to have this condition hold is to have the difference equation depend only on the

discrete times tr and tr+1. Physically, this requirement implies physical dissipation.

(E1) Since our dependent variable corresponds to temperature on the absolution Kelvin scale, it must be

always non-negative (Dreher et al. (2009); Maxwell (1867)).

(F1) By having the property of measurability, we mean that the model should not contain any parameter

and/or dependent variables that can not be readily measured using standard experimental techniques.

Let urs be the temperature at discrete time tr and location xs. The simplest difference equation that

satisfies all of the above requirements is given by the expression

(9)

{
ur+1
s = purs+1 + (1− 2p)urs + purs−1

0 < p ≤ 1
2 .

In the work to follow, we specialize to the case p = 1/3 and Eq. (9) reduces to

(10) ur+1
s =

(
1

3

)(
urs+1 + urs + urs−1

)
.

This special value of p does not change any of our conclusion.

It should be indicated that Eq. (10) is a partial difference equation, first-order in the discrete-time and

second-order in the discrete space variables. Furthermore, Eq. (10) can be solved exactly by a number of

standard techniques (Mickens (2015)). We will not provide such solutions since their explicit expressions

play no role in the purpose of this article, namely, the derivation of the meso-level equation and how it should

be interpreted. However, we do assume that there exists an analytic function, U(x, t), such that

(11)

{
urs = U(xs, t

r),

s = integer ; r = (0, 2, 2, . . . ); xa and ta are fixed.

Note that Eq. (10) can be rewritten to the form

(12) ur+1
s − urs =

(
1

3

)(
urs+1 − 2urs + urs−1

)
,

and from this we can obtain the expression

(13)
ur+1
s − urs
ta

= D

(
urs+1 − 2urs + urs−1

x2
a

)
,

where

(14) D =

(
1

3

)(
x2
a

ta

)
.

If D is assumed constant and if the limits

(15) ta → 0, xa → 0, D = constant,

then Eq. (13) becomes the following partial differential equation

(16) ut = Duxx.

Comment 4.1. In more detail, the following are the correct limits:

(17)


ta → 0, xa → 0; r →∞, s→∞;(

1
3

) (x2
a

ta

)
= D = constant;

tar = t = fixed, xas = x = fixed.

6
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Observe that Eq. (16) is the standard heat equation (Joseph et al. (1989)). Also, the procedure used

to derive this result opens up a number of important issues related to the macroscopic limits of microscopic

models (Abeyaratne (2014); Ascher (2020); Lax (1954)). As we shall see in the next section, an alternative

analysis and interpretation is possible.

5. Macro-level approximation

Consider Eq. (10) and as stated above, assume that there exists a function, U(x, t), with appropriate

analytical properties in x and t, such that

(18) urs = U(xx, tr).

This implies that U(x, t), for fixed x and t, satisfies the same recurrence/different equation as urs, i.e.,

(19) U(x, t+ t) =

(
1

3

)
[U(x+ x, t) + U(x, t) + U(x− x, t)]

Thus, at the meso-level where (δx, δt) are the length and time (physical) scales, we may identify (x, t),

respectively, with (δx, δt), and obtain

(20) U(x, t+ δt) =

(
1

3

)
[U(x+ δx, t) + U(x, t) + U(x− δx, t)]

To proceed, carry out Taylor series expansions of the individual terms in Eq. (20) and retain only terms up

to O(δ3
t ) +O(δ6

x). Doing this gives, after division by δt, the expression

(21) Ut +

(
δt
2

)
Utt +O(δ2

t ) = DUxx +

[(
D

36

)
δ2
x

]
Uxxxx +O(Dδ4

x),

where

(22) D =
δ2
x

3δt
.

Note by assuming that D is fixed in value, we have

(23) δt = O(δ2
x).

Consequently, to terms of O(1) and O(δt) +O(δ2
x), the evolution equations for U(x, t) are

O(1) : U t = DUxx,(24)

O(1) +O(δt) +O(δ2
x) :

(
δt
2

)
U tt + U t = DUxx +

[(
D

36

)
δ2
x

]
Uxxxx.(25)

We have placed bars over the U ’s to indicate that these equations only yield approximations to the exact

PDE for U(x, t).

Note that the lowest order expansion, i.e., retaining terms to O(1), the evolution equation is the standard

heat conduction PDE. Since

(26) ∂t = D∂xx +O(δt) +O(δ2
x),

we have

∂xxxx =∂xx · ∂xx

=∂xx

[(
1

D

)
∂t

]
+O(δt) +O(δ2

x).(27)

7
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Substituting this latter result into the second term on the right side of Eq. (25) gives

(28)

(
δt
2

)
U tt + U t = DUxx+

(
δ2
xD

36

)
Uxxt.

This PDE is the same PDE that was derived by Guyer et al. (1966) under different assumptions.

6. Discussion

In this work, we began by assuming that we have the exact micro-level evolution equation for simple

heat conduction, given by Eq. (10). Assuming that the solution of this discrete equation can be represented

as the values of an analytic function, U(x, t), evaluated on the lattice of discrete space and time points,

we used Taylor series expansion on this expression at the meso-level to obtain what we will call modified

hybrid-PDEs, see for example Eq. (28). Dropping the bar over U , the following two lowest order PDEs were

found

(29) Ut = DUxx,

τUtt + Ut =DUxx +D1Uxxt,(30a)

τUtt + Ut =DUxx +D2Uxxxx,(30b)

where in this representation, we have expressed them, especially the Eqs. (30a, 30b), in a general way suitable

for use as phenomenological equations, where (τ,D,D1) are to be determined from experiment. In principle,

as indicated in the previous section, these parameters are determined by the time and length scales at the

meso-level.

Observe that Eq. (29) is the standard heat equation. Within our interpretation, this PDE should be

considered the macroscopic limiting equation of the microscopic Eq. (10). We do not designate it by the

name continuum limit (Abeyaratne (2014); Ascher (2020)), since no micro-level or meso-level parameters are

required to go to zero. Also, note that within the context of this work, relationships should exist between

the space and time scales at the micro- and meso-levels, e.g.,

(31) δx = N1xa, δt = N2ta,

where N1 and N2 are large integers.

Since neither the micro- or meso-levels parameters go to zero, we expect the small parameters (ε1, ε2),

where

(32) ε2 =
δt
T ∗

, ε =
δx
L∗
,

to play important roles in the expression of the first modification to the macroscopic equation. To show this,

carry out the scaling of independent variables in Eq. (28) as follows:

(33) t = T ∗t, x = L∗x,

where (L∗, T ∗) are the macro-level scales, and (x, t) are the dimensionless independent variables. Since the

PDE is linear, we need to make no explicit scaling for U . Substituting Eq. (31) into Eq. (28) and multiplying

each term by T ∗ gives

(34)

[(
1

2

)(
δt
T ∗

)]
∂2U

∂t̄2
+
∂U

∂t̄
=

(
DT ∗

(L∗)2

)
∂2U

∂x̄2
+

(
δ2
x

36

)[
T ∗D

(L∗)4

]
∂4U

∂x̄4
.

Keeping in mind the definition of D given in Eq. (22), we define D, ε1, and ε2 as follows

(35) D =
DT ∗

(L∗)2
, ε1 =

1

2

(
δt
T ∗

)
, ε2 =

(
δx
L∗

)2

,

8
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Figure 2. Hiearchy of modified PDE.

where it should be noted that these three parameters are dimensionless, i.e., pure numbers. Also, it is

expected that ε1 and ε2 are small, i.e.,

(36) 0 < ε1 << 1, 0 < ε2 << 1.

With this notation, Eq. (28) in dimensionless form is

(37) ε1Ut̄ t̄ + Ut̄ = DUx̄x̄ + ε2DUx̄x̄x̄x̄.

From the fact that δt = O(δ2
x), we can expect an infinite hierarchy of modified PDEs, starting from

(38)

{
O(1) : Ut = DUxx,

O(δt) +O(δ2
x) : Eq. (37)

Keep in mind the fact the N -th modified PDE contains terms from all the previous equations. The N = 0

and N = 1 cases are the two expressions presented in Eq. (38).

Observe that at the N -th level of the modified PDEs hierarchy, the time derivatives up to order (N + 1)

appear. This means also that spatial derivatives to even order 2(N + 1) must occur. Thus, for N = 1,

the time derivatives Ut and Utt appear only along with the spatial derivatives, Uxx and Uxxxx or Uxxt).

However, for most if not all one-dimension space systems, the initial condition, U(x, 0), is known, along

with related boundary conditions, but Ut(x, 0) or higher time derivative are not known, it follows that none

of the modified PDEs is measurable, i.e., their mathematical solutions require information that can not

be physically determined. An important implication is that this way or methodology of investigating heat

condition is invalid or at least not productive. One way to view this situation is to remember that if we

begin with a discrete space and time model, then the mathematical structure currently used corresponds to

difference equations. However, it is well known that difference equations do not model exactly differential

equations; see the books by (Mickens (2015, 2021)). In particular, the following relation holds

(39) difference equation = infinite-order differential equation.

This can easily be seen by considering the following argument:

(1) Define the (difference) shift and derivative operators by the following relations

(40) Eaf(x) ≡ f(x+ a), Df(x) ≡ df(x)

dx
.

(2) The Taylor expansion of f(x+ a) is

f(x+ a) =
∞∑
k=1

(
ak

k!

)
Dkf(x)

= eaDf(x).(41)

9
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(3) From the definition of the shift operator, it follows that the operators satisfy

(42) Ea = eaD

(4) The difference operator is defined by the relation

(43) ∆a = Ea − 1.

Comparison of Eq. (42) and Eq. (43) gives

(44) ∆a = eaD − 1.

(5) Since ∆a/a and D, are the discrete and continuous forms of the derivative, Eq. (44) shows that

they nonlinearly related and any finite order difference equation corresponds to an infinite order

differential equation. Also, if we solve Eq. (44) for D, we obtain

D ≡
(

1

a

)
ln(1 + ∆a)(45)

=

(
1

a

)[
∆a −

∆2
a

2
+

∆3
a

3
− ∆4

a

4
+ · · ·

]
.(46)

Consequently, it can be concluded that in general a finite order differential equation is equivalent to

an infinite order difference equation.

In summary, we have used the dynamic consistency methodology (Mickens (2005, 2015)) to construct

a discrete space and time microscopic mathematical model for one-space dimension heat conduction. To

obtain solutions to this difference equation, only initial and/or boundary values are required to be known.

After some manipulations, we were able to derive an infinite number of mesoscopic PDEs. These PDEs form

a hierarchy of equations, each of which modifies the equations on previous levels; see Fig. (2) However, the

modified equations at the first and higher levels generally require knowledge of time derivatives for which

experimental data is either difficult or impossible to measure. Our major conclusion is that the procedures

used to construct and justify previous generalizations of the basic heat conduction equation, ut = Duxx,

are not valid and that other mathematical structures must be discovered or created to resolve issues such as

infinite speed of propagation for the transfer of information (Ali et al. (2005); Cattaneo (1948); Christov

et al. (2005); Dreher et al. (2009); Guyer et al. (1966); Joseph et al. (1989); Maxwell (1867); Vernotte

(1958)). We are currently investigating this problem.
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