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PREFACE

Recently certain students in the Department of

Mathematics of Atlanta University became intensely inter

ested in The Theory of Functions of a Complex Variable.

As a result of this interest a series of theses was initi

ated. Each thesis attempts to simplify and clarify a par

ticular portion of the lecture notes obtained while enrolled

in the course.

This thesis, the third in the series, presents the

treatment of the first phase of the second semester course

in The Theory of Functions of a Complex Variable. It is a

continuation of

Complex Variable.Part I and Part II, theses by Lindsey

Branch Johnson and David Lee Hunter.

This paper deals extensively with the calculus of the

residues, and conformal representation, making reference to

certain related theorems where necessary.

It is the sincere hope of the writer that this paper

?/ill be helpful and serve as an inspiration to those inter

ested in The Theory of Functions of a Complex Variable.

J» Xj. S«,
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LIST OP SYMBOLS

Listed below are the symbols used In this paper

and a statement of their meaning.

approaches or goes over to

Implies

4 epsilon

^L not equal to

— equal to

=: defined to be

^^ less than

^ less than or equal to

>greater than

3Lgreater than or equal to



CHAPTER I

THE CALCULUS OF RESIDUES

The Realdue Theorem^- Suppose f is regular in a neigh-

borhood U of a point Zo then by Cauchy»s integral theorem,

if G is a closed path contained in U,

I
Let f be singled valued and regular in a neighborhood

U about Z, except possibly at the point ZQ itself, and let

0 be a closed path contained in U such that Zo is contained

in C, then

is not necessarily equal to zero. Its value can readily be

determined however, since f (Z) can be expanded in a Laurent

series in a neighborhood of Zo{ O<lz - Zol<r ), that is to

say

f(Z)=

In ( 0< | Z-Zo|<. r ), and we have

, where o<P<r.

This is true since the integral of each term of the expan

sion except GU,(Z-Zo)"' is zero. So that we have

1



~ -2.77x1- tf-i, hence

f6; J* - «-, •

We no\tr define the residue of f(Z)«

3Defto.it^ion..- The coefficient of that term of the Laurent

expansion whose exponent is -1 is called the residue of f(Z)

at the point Zo. That is,

a i
is the residue of f at Zo, where C is a simple, closed posi

tively oriented path contained in the domain of regularity of

f, containing the point Zo in its interior. How we state and

prove

Theorem I« The Residue Theorem.- Let the function f he

regular and single-valued in a region G, except for a finite

number of poles. Let G "be a simple closed, positively oriented

path contained in G, not passing through any poles of f, then
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where £ R Is the sum of the residues of f(Z) at its poles

inside C.

Proof.- Let Z , Z ..... Z be the finite number of poles

of f(Z) inside C. Let Ci, (I-=l, 2, ... , k) be circles about

as center, such that G±n 0**0 if i-^ j, (j = 1, 2,..., k),

By an extension of Cauchy's integral theorem we have

Therefore our theorem now follows, since the residues in

question are the terms of the right member of this equation.

Q. E. D.

This theorem has numerous applications. We first consid

er a few chosen at random.

(a) Suppose the function f Is regular and single valued

In a region G, except for a finite number of poles. Let C be

a simple, closed, positively oriented path contained in G,

suth that f(Z) 0 on C and C does not pass through any pole

of f(Z), then we make the following assertion ;

Theorem 2.-

[ J* r H " P.

Where H Is the number of zeros and P is the number of poles

of f(Z) inside C.

Proof.- Let Z;, Zj9 . .., ZKbe the zeros of f(Z) inside



0 and b, , b^, ... , "by. be their respective multiplicites. Let

01 » d * • • • 9 Ol k® the poles of f(Z) inside C and let h,, h^,

... t 1% be their respective orders, Then observe that f(Z)

can be uyritten as follows:

(i) f(ZU(Z-Zj)bj' Pj(Z), (J^l, 2,..., k)

where P«(Z)^O for Z=Zj, and

(U) f(Z)=l/(Z-ai)hiQi(Z), (i=l, 2,,.., m)

where Q£(Z) is regular at Z = ^» Moreover from (i)

f'(Z)/f(Z) - bj/Z-Zj + P'jCZJ/P^Z), (Jsl, 2, ..., k)

and from (ii)

f'(Z)/f(Z) - -hi/Z-tfi + Q'ltZj/QiCEJ, (1 = 1, 2,..., a)

Hence the function f!(Z)/f(Z) has inside C, simple poles

at Z^, Z2, •••, Zjj-, CLi, Q-2t "*$ &m« Therefore by the resi

due theorem

_J

STTt

where H= ^ bj and P=£hi# Q.E.D,

(b) Evaluate certain integrals by the residue theorem.

Show that

Jit

TTxF - 7r'

Hote: Before we proceed we make the following remarks;



(1) If f(Z) has a simple pole at Zo, then its Laurent

expansion in the neighborhood (0^|Z-Zo|^r) is as follows:

f(Z)ra-,/tZ-Zo) + <?<,+ ^(Z-Zq) + •••, and

(z-zo)f (z)^., + ao (z-zo) + ^(z

Thus we hare in this case

(ii) If f(Z) has a pole of order b, (1 < b < +

then its Laurent expansion in the neighborhood (0^

is as follows:

) at ZOt

and

Thus we have in this case

How \?e evaluate

+a_/(z-zo)

Let Pr be the closed path which contains the segment from

-R to +R and the upper semicircle CR, JZ| = R back to -R,

(with the orientation Indicated in figure 1).



By the residue theorem

1
where £ Rtl/tL+Z2)) denotes the sum of the residues of l/^L+Z2)

inside f^« Since l/(L+Z2)r l/(Z+i)(Z-i), we see that the poles

of l/CL+Z2) are ±i. Only i is in the upper half-plane, so we

choose R large enough so that it contains 1. low upon applying

note (i) from page 5 we have

.1

Where (Res i. ) denotes the residue of 1/(1+g2) at i, ITote that

in this case f (Z) r. 1/tL+Z2). Eeace

But

We want to show that

I J* wo3 as *R »+~-

Let R be fixed but greater than one. Then observe that

JLi
1TR
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on Cr. Therefore

I,c '+*' * 'ai

r
Consequently

= XT.

now turn our attention to more general applications

of the residue theorem for the evaluation of certain integrals.

Theorem 3.- Let Q(Z) be a function of Z satisfying the

following conditions:

(i) Q(Z) is mesomorphic*** in the upper half-plane;

(il) Q(Z) has no poles on the real axis;

(iii) ZQ(Z)—>o uniformly as |Z|—» + «*= , for

0 *• argZ £77;

I A 60 ^X and

both converge*

Then

X

1
"^Only singularities in finite part of plane are poles.



a

where X- H* denotes the sum of the residues of Q(Z) at its

poles in the upper half-plane.

Proof: Consider the semicircle CR:\Z|=R, 0 ■& arg Z'fe.TT.

Then consider the closed curve \ o -CR+(-R,R), (See figure 2).

Let R be large enough so that fjj contains in its interior

all the poles of Q(Z). Then, by the residue theorem,

I
But

= \Q
fa

we want to show that

as

Observe that

By condition (iii) of our theorem, there exist an Ro such that
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|Z(«jQ(Z)|«6 forfzl^Ro. Hence for alllRl>R0 we have

Thus

r
Oas R-

If (Iv) Is satisfied, It follows that

Q.E.D.

Remarks.- Suppose Q(Z) H(Z)/D(Z), where H(Z) and D(Z)

are polynomials ajad the degree of the polynomial D(Z) exceeds

that of N(Z) by at least two and D(Z) Is not zero when imagi

nary Z is zero. Then conditions (1), (II), (iii) and (iv) of

the previous theorem are satisfied.

Exjjggle.- Evaluate

dx

r
Set Q(Z) = l/fe4) + ^4, Th® poles of Q(Z) win be the zeros of

Z4 +O4, that Is to say, the solutions of Z4 +a4=0. We find

these solutions as follows:

Z4 - ■■€&, (where A^rooBiT + i sin TT - -1), and

Thus

±2, •••)• Hence Zk- gg faK+iVjfr' , ( where k - 0, t, 2, 3,).
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How upon substituting for k we have

Zo nO.^, ZX^a£ ¥ ,Z2=tf

where only Zo and Z^ are in the upper half-plane.

Observe

z0 =a

Hote that Z/(Z4 + qJ1) » 0 uniformly as JZl * +

Hence the previous theorem is applicable. Therefore

.

_JtK

>
- as

that is

t'+a* ~ — <- R* >

I ^(residues at Z ~a^^. '* )

But the residues at the simple poles Z-Zi.,(i = O, 1) are

Since our limit is an expression of the indeterminate form

0/0, we apply L'Eospltal's rule, and so

Thus

Pes.
^ j ~

indeterminate forms see, John M, H« Olmsted,
(Appleton-Century-Crofts, Inc., 1956).
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-JIT

and

"R es

Hence £* R+= —7

Recall

I za*

r

Therefore

Bxercise.- Use theorem 3 to prove the following results:

(1)

v/o

3. Integration Sound the Unit Circle

Suppose ^(u,v) is a function of u and v, where u2 +

In particular consider

^ 1«

(1) cos

where gf(sin 0, cos 9) is a rational function of sin 0 and
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cos 9.

Set Z = £<fl, but &t6z: cos 0 + i sin 9, and £L° -

cos 9 -i sin 9. Substracting these two quantities we have

9,

that is to say

sin 9 = l/2i(Z - l/Z).

Using a similar procedure, we obtain

cos 9-l/2(Z ± l/Z).

Since dZc=i^6d9, we have that de = dZ/i lL&- dZ/iZ.

How upon substituting in (i) the values obtained above

and setting the results equal to I, we have

- l/Z), 1/2(Z + 1/zfJdZ/iZ.

Hence I a 2 77iisum of the residues of 0[l/2l(Z - i/Z)/ig#

1/2(Z + l/Z)/iZ]inside c],

where C is the unit c3j?cle |Z| =1, Let 51 Rc denote the sum

of the residues of #(l/2l(Z - l/Z)/iZ, l/2(Z +

its poles inside C« Then

ISSSEiE*" Prove that, if

= rki£i£- = 4?:/a- ipC?j} •

Proof: Set Z-0/6 • Then cos 9 s l/2(Z + l/Z), sin 9 -

- l/Z)) and d9 ~ dZ/iZ. How upon making the above
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change of variable, if 0 is the unit circle 1Z| si,

consider Z2 + 2 QJ® Z + 1=0, then

, ,

Set

that is to say << and /S are the roots of the quadratic

Z2 + 2 <M*d Z + 1 = 0.

Observe that <*(3 = 1 and <^ + (3 — -2 ^-/te). Since the

product of the roots <* ,<3 is unity, we have |4HfM~l, where

| (31 ^»|<^| , and so Z =<* is the only simple pole inside 0, The

origin is a pole of order two. We calculate the residues at

(i) Z =• <* and (ii) Z - 0.

(i) Res
{?-,t }

>-C*-0)

Z=o(-fi -

(ii) Res,

OJ
is the coefficient of l/z In

the Laurent expansion of



in

14

a?# where (r>0). But

£*+0 z

It is easily seen that the coefficient of l/Z is -2 4,/b, Hence

where

Therefore

Q.E.D,

- Use the above method to prove the following

results:

(1) f
Jo

a 6

(iU)

g+3. Cos 0) Cos y

3 ■»* *t CwJ "

n& -^2— (3 -

(n is a positive integer).

aheorejoa 4«- Let Q(Z) have a sipple pole at Z=OLon the

real axis, otherwise Q(E) satisfies the conditions of theorem
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three, (with the neoessary modification). Then

J-O0

where X.R+ = sum of the residues in Imaginary Z :=» 0.

Proof: Let R^p-^O, Let Or denote the semicircle IZ|-R,

0 -£ argZ j^TT. Let Xdenote the small semicircle lZ -0»\ = ^,

0 ±. arg(Z - a) «=.TT , with its center at x =& and its radius P

Let fL p be 'tiie contour shown in figure 3.

■a'

FIG. S

Let R be large enough so that fR p contains all the poles of

Q(Z) in imaginary Z greater than zero. Then the integral round

[t? p tends to zero as R—-» + o* , as before. We therefore have,

if the path of integration is as indicated in figure 5,

How observe

by Cauchy's Integral theorem.

As R —>+ <*=> and P —» 0,

J- R
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P |Q(Z)dZ,

and

llm p(Z)dZ -0,

We must now consider

i
Since Q(Z) has a simple pole at Z -d , Q(Z) =. tfz/fc -C?J, where

is regular at Z=CL. Then

— Ol )dZ = 2T\l0(d)* We want to show that

]Q(Z)dZ = -TT L ^(a) as P * 0.
Jx

Consider

lQ(Z)dZ + 77i^(a) • Let t ^ 0 be arbitrary. Set Z -d= ?£*"

. Then dZ = 1 pX^^dG. How

|Q(Z)dZ + 77*i0(Q) =. |^f(Z)/(Z

r -I'

tr
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Now since Q(Z) is continuous at Z=Ct| there exist a Po de

pending upon £ such that

I

- 0(0.)

rr

fc- , where » Hence

wherever PcPo* that

as

Since 0(CL) is obviously the residue of Q(Z) = $(Z)/(Z -a.)

at Z=Q., we have therefore

f-
P Q(x)dx ~ 2TTi. £pt + 7?i0(a). Q.E.D.

Theorem 4 generalises to;

Theorem 5.- Let Q(Z) have only a finite number of simple

poles on imaginary Z equal to zero. Otherwise Q(Z) satisfies

the conditions of theorem 5, (with necessary modifications).

Then

rr
P Q(x)dx = 2fT± £r+ + 1?i XR°, where lR° denotes the

sum of the residues of Q(Z) on imaginary Z equal zero.

Suppose Q(Z) = N(Z)/b(Z), W, D are polynomials. Suppose

further that the degree of D is greater than or equal to two

plus the degree of H, If D(Z) has only simple poles on imagi

nary Z equal to zero, then the hypothesis of theorem 4 hold

and hence the conclusion.
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We are now concerned with evaluating integrals of the type

where m ~? 0«

First we prove a very useful theorem which is usually

referred to as Jordan's lemma.

ions :

Jordan's Lemma.- Let Q(Z)dZ satisfy the following condit

(i) Q(Z) is raeromoric In the upper half-plane, with no

poles on the real axis,

(il) Q(Z) VO uniformly as |Z| l+oo, O^argZ^TT,

(iii) is positive; then

> ° as R

where Or denotes the semicircle |Z) = R, 0 ^ arg Z £=

Proof: Set Z =-R HLe = It cos9 + iR sin ©. Then dZ becomes

and we have

-™ * **'*• *

But

By condition (ii) there exists, for any t -? 0, an Ro depending

upon (. suth that |q(Rl"d)\ ^ fc for all R>RO, and
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'o

Uow set u(9) — sin 9/9. Observe that u(9) 9 1 as © * 0

and u(e) »2/fi» as 9 *^2. We want to show that u(e) de

creases in [0,^2). Consider the derivative of u(9). Thus

uf(9) - ajSSSJ^Z-glajB . How set h(9) = 9 cos 9 - sin 9,,
or

and consider h'(9) - - 9 sin 9, so that h'(9) = - 0 sin 9 -£^ 0

in (0,^2], Hence h(9) cannot increase. But h(0)=- 0, so that

u'(9)= h(9)/9 ^ 0. Thus u(9) cannot increase, and hence u(9)

decreases in [p, 1^/2} • Thus

u(9) = sin ®/9 2: 2/tr on (o, TT/2) .

Hence

for (R>R0). But fe is arbitary, hence the lemma. Q.E.D.

By virtue of this lemma and previous results we have the

following theorem:

Thepremjj.- Let Q(Z) =H(Z)/b(Z), where N(Z) and D(Z) are

polynomials, and D(Z) =0 has no root belonging to the real

numbers, then if:

(i) the degree of D(Z) exceeds that of U(Z) by at least

one,
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(11)

I
where £ R* denotes the sum of the residues of

poles in the upper half-plane.

If we write f(Z) — Q(Z )£"***, we see that f(Z) satisfies

the conditions of Jordan's lemma and so

r

f(Z)dZ >0 as R *<?*>• On using the same eont«*tf as

■»

before, that is a large semicircle in the upper half-plane,

and by letting R *oe» we get

; :=. A. 7T*L Z. £ • Q.E.D.

Example..- Prove that, if CL > 0, -w -p 0,

Proof: Recall ^."*?=cosWX+ i slnwX. Also observe

that

0 J- <a*

Moreover

where

c^fy'r » denotes the real part of
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How observe

is regular in imaginary Z -2- 0 except

(a2 + z2)3

for the pole Z"35- id.(of order 2).

Hote: d2 + Z2s&0, Z2 = -0.2 fcaplies that Z2 = (OLi)2

which implies that Z =• ± ^i. Also Q(Z)—»»0 uniformly as

|Z| ^ + o». Hence for this Q(Z) the conditions of our theo

rem are satisfied and therefore

where T. R+ denotes the residues of in the upper

half-plane, that is, the residue at Z - O.i. We calculate the

residue at Z =C^.i as follows:

Res
u
I di

-A m

(/ + Am)
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Hence

J-oo L

Therefore

Exercise.- Prove

)

4 Integrals Inyolv ing Many-Valued Funct ions^

A type of integral of the form

1'a
where CL is not an integer, can also be evaluated by contour

integration, but since Za~' is a many-valued function, it be

comes necessary to us© the cut plane. One method of dealing

with integrals of this type is to use as a contour a large

circle/7, center at the origin, and radius R; but we must cut

the plane along the real axis from 0 to + o=> and also enclose

the branch-point Z = 0 in a small circle X of radius /°. The

contour is illustrated in figure 4.

Let CL not equal an integer. Let Q(Z) be such that the

■*B, G. Phillips, Functions of a Complex Variable With
Applications (Interscience Publishers Inc., 1958),pp< 118-128
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following conditions are satisfied:

(i) Q(Z) has a finite number of poles in the plane, but

no singular points on the real axis,

(ii) Z times Za"'Q(Z) »0 uniformly both as IZI *0 and

as Z )oo« Then

%^'a.xn-ft

where £. R denotes the sum of the residues of f(Z) inside the

contour, f(Z) •=. Z9''Q(Z).

Proof: Let our contour/ be a large circle, center at the

origin, and radius Rj but cut along the real axis from 0 to

and inclose the branch point Z = 0 in a small circle X of radius

P. How since Z f (Z) >0 unformily both as JZ|- *o°t and as

|Z1 >0, we get the integral round /tending to zero as R

and the Integral round X tending to zero as P

if R is large enough, JZ t(Z)\4C and so|f(Z)|<

Oj for on /"*

PIG. 4

Thus
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Similarly onf, )Zf(Z)\^6 if f> ia small enough, and so If (Z )|/:

and

Jx
Hence on making P ——* 0 and R

where £ R is the sum of the residues of f(Z) inside the con

tour.

Observe that the values of x^'at points on the upper and

lower edges of the cut are not the same, for, if Z<L~LT£*'a, we

have Z<t~'=r0"~'£C6fL0~~tl and the values of Z at points on the

upper edge correspond to Jzl^T, G — 0> ®&& at points on the

lower edge they correspond to lZl*T ,0*=

Since t*»+<*-0^ i*™*. f WQ get

Q.E.D

Hote: When calculating the residues at the poles, Z

must be given its correct value 7a'1 JZ1"* at each pole.

Example.- Prove that

Io

Here we observe that, when f(Z) =. Z3""' (1 + Z)"1,

tends to zero aa \Z| tends to infinity, if OZl <L 4- l9 and
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Z f(Z) tends to zero as IZItends to zero, if 0. >* Q. Hence, if

0/L CL^l, the integral round ftends to zero as R tends to in

finity and the integral round Iftends to zero as ftends to zero.

Thus

:-—3»>l Jresldue of z (1 - z)"1 at z -=ij

At Z - -1 we have r =. 1, e =TT, and so,

Hence

r
j

We begin our discussion of the expansion of a meromorphl®

by considering the following theorem,

TJieorem 7.- Let f be meromorphic. Let ^i, #2* *** be the

simple poles of f and l®t L±9 J>2*"* be the ^©sP©ctive res

idues of f at the poles CL^, CL%, ***• Assume that

Let f(Z)/Z »0 uniformly as Z

* f(0) I
Proof: Let Cn be a positively oriented closed path con

taining the origin and the points (X\9 #2» "*» & n# !** Rn

be the minimum distance from 0 to Cn (written: % = min d(o, Cn).

Let Lq — length of Cn. Note that ^ » + o*asn ——V +
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Let f j?> 0 be given, then there exist an N depending upnn 6-

such that |f (Zn)/Zn| £. fe for all n?*N. Here Zn is any point

of Cn which gives us the minimum Hn (see figure 5). How con

sider the integral

Jc
where Z is fixed for the moment and observe

Jn - -f(O) ♦ f(Z) +
f J*

Note; The residue of the origin is given by

The residue of at ^ = Z is given by

2

If now we can show that J 0 as n , the theorem is
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proved. Observe

Unl • 1 c Ln
2TT «n "1^1

for all n > N since for f ^ 0 there exist an N depending upon

€ such that}f(Zn)/Zn|^* for all n 7H, and the fact that

But note that L^ <£. 8Rn, since Cn •£. the perimeter of a square

with sides equal to 2Rn.

V Rn "

Hence Jn *Q as n—-* + <=*», since € Is arbitary. Therefore

Q.E.D,

Example.- Using theorem 7, we prove that

f(Z) = csc Z = l/Z +

Proof: f (Z) =. csc Z =, l/sin Z has simple poles at Zn ^

n = 0, -1, -2, •••, since in the Laurent expansion of f(Z) we

have
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and

thus the pole at the origin Is a simple pole. The theorem

cannot be applied until we eliminate the pole at the origin,

life do this in the following manner. Observe

3/ 5/

Thus, csc Z - l/Z = Z/3! + •••• Set g(Z) = cso Z - l/Z and

observe that g(Z) has no pole at the origin. Th© poles of g(Z)

are at Zn^=. nTP , n = ±1, -2, * •••. How we want to find the

residues of g(Z) at Zn. They are given by

Z S"> * J A^( (^ £as z + ss**) J

Cos r\1? Cos
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Now applying theorem 7:

Since g(Z)/Z = cso Z/Z - l/Z2 zz l/Z sin Z - l/Z2 »0 uni

formly as jZ|—-*+o», we have

.(I) =030 Z - l/Z =g(0)

(where $1 indicates that n ■= 0 is omitted in the summation)

But g(0) =. 0 since

~ *" •*'" G f « ~'" \ £. Co* £ + i, ' ~ "*

so that

^^ J

.(rff , (-'/

- MtT

Therefore n •=. i

= V **t-,,*
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Exercise.- Prove that

sec Z = 4

6. Summing Qertaln Infinite Series by the Calculus of Residues

The method of contour Integration can be used with advan-

age for summing series of the type £. f(n), if f is a meromor-

phic function of a fairly simple kind. We now prove the follow-

ing theorem.

Theorem.- Let f be a rational function such that Z f(Z)

tends to zero uniformly as |ZI tends to + o*> • Let f(Z) have

poles at **-\9 ^2* •"» ^ p with residues Z^, ^2* •••»^p

respectively. Then

(1)

Proof: (i) Let Cn be a simple closed path containing the

origin but not passing through any integral values, such that

Rn =. min d(o,Cn) >+ o*, as n—->+o». Now consider the in

tegral

J rr

Kote: Cot XT z has simple poles at Z = k, k ■= 0, t±t •••#

and the residues of cot IT Z are calculated as follows:
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2-»fc

" rr

Now by the residue theorem

We want to show that J >0 as n > + <*» . Let t>o be given

and arbitrary, then there exist an N depending upon € such that

|zn f (Zn)|il 6 , for all n > N. Here Zn is any point of Cn

which gives us the minimum Rn. Thus

where IS is the upperbound of cot 77 Z on Gn and L^ is the length

of Cn, for all n>N, How since 4 is arbitrary J *0 as

W »+oo . Hence

I i - » It -I

Now (ii) may be proved similarly.

Example.- Find the sum of the series

n s
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Solution: f(Z) r= l/(Zg -0.2). Note that Z f(Z)—»O

uniformly as |Z| »+c*». f(Z) is a rational function, with

poles at Z — ±&i. Thus we see that thejorem 8, (ii) is appli

cable. Recall:

sin 9=-^ i=

sin u.1 — — : =■ *•

We calculate the residues of csc V'Z at Z — tH i as follows:

Res

Hence

/ I a. ss*s,*h rr<L

But observe

*■=.?
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Finally



CHAPTER II

THE INVERSE THEOREM FOR ANALYTIC FUNCTIONS

7. Poles .and Zeros of Mteromorphlc Functions

We begin our discussion of the inverse theorem for analyt

ic functions by recalling the definition of a meromorphlc func

tion.

Definition.- A function f whose only singularities in the

finite plane are poles, is called a meromorphic function.

We re-state theorem 2, in a slightly different form and

prove it by making use of the variation of the logarithm of

f(Z), written log f(Z), around a specific contour C.

Theorem 9.- Let f be meromorphic in a bounded region G

and let f be regular on the boundary C of G and not equal to

zero on C. Then

N - P =-•
7V6

where N is the number of zeros and P the number of poles of

f inside C. (A pole of order m must be counted m times).

Proof: (i) Suppose Z — 4. is a zero of order m, then, in

the neighborhood of this point f (Z) = (Z -O.)m 0(Z), where

is regular and not zero. Hence

Since the last term is regular at Z =4. , we see that f »(Z)

divided by f(Z) has a simple pole at Z =r <t with residue m.

34
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Similarly, if Z=& is a pole of order k, f'(Z)/f(Z) has a

simple pole at Z->& with residue -k. It follows, by the residue

theorem that

U - N-P-

(il) Suppose f(Z) is regular throughout G. Then

H =ry I -^^- A 2- , since P ^ 0.

Set d/(dZ) • log f(Z) — f«(Z)/f(Z). Then

which may be written as

where Ac log f (Z) reads: variation of the log f(Z) around

the contour C, But log f(Z) = log | f(Z)| + i arg f(Z), where

arg f(Z) denotes the argument of f(Z). Hence

since log |f(Z)| is one-valued. Therefore

This result is known as the principle of the argument. Q.E.D.

8. Rouche's Theorem

We now state and prove Rouche's theorem.

Theorem 10.- Let f and g be regular functions inside a
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simple closed path C and let f (Z) * 0 on C. Let \t(Z)\>(g(Z)|

on C. Then the number of zeros of f is equal to the number of

f + g inside C.

Proof: Recall H =. 1/2 rr Ac arg f (Z), where H is the number

of zeros of f inside C. We want to show that 2TTHf + g (the

number of zeros of f (Z) + g(Z) in C) equals 2TTNf (the number

of zeros of f(Z) in C).

Observe

=. 9-

How we want to show that A^arg (1 + g/f) — 0

FIG. 6 PIG. 7

Since |g(Z)/f (Z)| ^. 1 on C in the Z-plane, we have that

vo =|+ ^Ce)

lies inside the circle \w - l|^l in the w-plane, (see figures

6 and 7). Hence as we go around the curve G in the Z-plane the
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path traced by w = 1 + g(Z)/f (Z) cannot encircle the origin

in the w-plane. Thus we have that

Therefore Hf +g — Uf• Q.E.D.

We can now prove the very important inverse theorem for

analytic functions,

9. The Inverse Theorem for Analytic Functions

Theorem 11.- Let f be regular in a region G, and f ^o^ &■ 0

for some ZQ belonging to G. Then there exist positive number

yj and p such that the values of f in |f(Z) - f (Z0)|<L^ are

taken on once and only once for all Z belonging to \Z - Zo|^-f.

Proof: There exist a «f such that f(Z) :£ 0 in 0<|z - Zoj*cf.

Moreover, There exist a P *■ d such f(Z):£oin|Z-Z0|&f«

Let n be the min|f (Z) - F(Z0)| . Then |f(Z) - f (Zo)|2ion
\

|Z -Z0|=f». Set wo= f(Zo), and w =f(Z). We want to show now

that if w-l belongs | w - wo| , then this value is taken on once

and omly once provided Zx belongs Iz - Zo|<f. Observe that wi-w.

is a complex number with the property |wi - wg|^*|. But note

Since |f (Z) - wol >|wo . w^ on |Z - Zol^, we have by Rouche'»s

theorem that f (Z) - w-^ has the same number of zeros inside

)Z - ZJsfas does f (Z) - wo, which has precisely one. Q.E.D.

Theorem 11 enables us to define the inverse function for

an analytic function. That is to say we can define the inverse

function Z ■=. 0(w), defined in }w - wo|*»{ such that )[&)=
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PIG. 8

Theorem 12.- Let J# be regular in |w - wo\^i1 . Then

fif'(w)T 1 for w belonging to |w - wnW A .
f»(Z) Ol v

Proof: Let w1 s. ffZ-jJ, where Z^^ belongs to |Z - Z0|z.f.

Then

w, -

*-**• jftt.) -

Q.E.D,



CHAPTER III

CONFORMAL REPRESENTATION

10. Mapping1

Properties of a real-valued function f of a real variable

x are exhibited geometrically by the graph of the function. The

equation y=f(x) establishes a correspondence between points :x

on the x axis and points y on the y axis; that is, it maps

points x into points y. The graphical description is improved

by mapping each point x into a point (x,y) of the xy-plane at

a directed distance y above or below point x. The curve that is

obtained is the graph of f• In a similar way we use a surface

to exhibit graphically a real-valued function f of the real va

riables x and y.

But when w = f (Z) and the variables w and Z are complex,

no such convenient graphical representation of the function f

is available, because a plane is needed for the representation

of each variable. Some information can be displayed graphically,

however, by showing sets of corresponding points Z and w. It is

generally easer to draw separate complex planes for the two

planes Z and w. Then corresponding to each point (x,y) in the

Z-plane, in the domain of definition G of f, there is a point

(u,v) in the w-plane belonging to the range G1 of the function

V, Churchill, Complex Variables and Applications

(Second Ed.; Hew York: McGraw-Hill Book Co., 1960), pp 20-21.

39
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f, where w=u + iv»

Definition.- If to each point Z of a region G of the

Z-plane, called the domain, there corresponds a unique point

f(Z)sw of a region G1 of the w-plane, called the range, then

there is said to be a mapping or map f of the region G into

the region G1 and the point w = f (Z) is said to be the image

of the point Z.

Suppose Z goes over to w under the mapping f, that is

f(Z) = w and w goes over to cr under the mapping g, or g(w) = o~,

that is

f

and w-

then Z goes over to o~ under the composite mapping g(f), or

g[f (Z)J ■= O", see figure 9.

'- plane

PIG. 9

Note: g[f(Z)]does not necessarily equal f (g(Z)) .

Using different notation the mappings or transformations

above may be s*ated as follows: if w = f (Z) - TZ and (T •=. g(w)

~ SW, theno- =. S(TZ) -z. STZ. This defines the composite trans

formation which takes Z into O"~ •
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11. Isogonal and Conformal Transformations

Suppose w=.f(Z) Is analytic at a point Z-o of a region G

of the Z-plane, and C^ and Cg tare two continuous curves pass

ing through the point Zo. Let the tangents to the curves C-^

and Cg at the point Zo make angles o^, ©(g, with the real

axis, and suppose that f»(%) £ 0. We want to find the mapping

of this figure on the w-plane.

Let Z^ and Zg be points on the curves C^ and Cg near to

Zo at the same distance r from ZQ, so that

and Zg - Zo=rjjtei, then as r 0,

-Zo •=. r

and 9g

I1

->

FIG. 10

The point Zo goes over to wQ In the w-plane and Z^ and Zg

go over to points w^ and wg which describe curves S^ and Sg.

Let

Then, by the definition of a regular function,

- Zo) =. f »(Z0),
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and since the right-hand side is not zero, we may write it as

RJLL\ We have then

lim fij^/ftiei - Ri;\
and so lim (^ - 6]^= A or lim 0^ =. <*, + X •

Thus we see that the curve Si has a definite tangent at

wo making an angle Q(x + A. with the real axis.

Simllarily, S2 has a definite tangent at w0 making an

angle o(v+ X with the real axis.

It follows that S^ and S2 cut at the same angle as the

curves C^ and Cg. Further, the angle between the curves S^ and

S2 has the same sense as the angle between the curves C^ and

Cg. We now define conforms1 and Isogonal mappings.

Definitions.- (i) An isogonal mapping is a mapping which

preserves magnitudes of angles but not necessarily the sense

of rotation.

(ii) A conformal mapping is a mapping which preserves both

the magnitudes of angles and the sense of rotations.

Thus we see that the regular function f, for which f'(z) ^ 0,

determines a conformal transformation. A point at which f'(Zo)

is zero is called a critical point of the function f.

Now that we have acquired the concept of mapping, or trans

formation of points, by a function f of a complex variable Z, we

shall apply this concept to particular types of functions.

12 • kkiear Functions

(i) The most simple example of a conformal mapping is
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the identity mapping

w= f(Z) -=.Z.

(ii) The most simple after (i) is the linear mapping

w ss f(Z) = Z + c* ,

where o^ is a complex constant. This mapping is a translation

of every point Z through the vector representing C. That is,

if Z =. x + iy, w s: u + iv and C =. 0^ + iOg, then the image of

any point (x,y) in the Z-plane is the point (x + Ci, y + Og)

in the w-plane. Since every point in any region of the Z-plane

is mapped upon the w-plane in this same manner, the image of

the region is simply a translation of the given region. The

two regions have the same shape, size and orientation*

Geometrically this is clear, but analytically we proceed

as follows: for the straight line y ==. mx + b,

wau+ iv and Z + «l •= x +0^ + i(y + ^2)*

So u + lv = (x + oi^) + i(y + «2). Hence

u = x + °<^

v =. y + <*2*

Therefore, y = mx + b > (v - «2) -=. m(u - *!) + b, that is,

v - mu + (*2 + b - mo^). This mapping takes the circle

IZ - Zo|sr into the circle |w - 0^ - Zo| r r, or Iw - (Zo +e< )|s.

r.

Exer6ise.- Prove that for the translation w2 -. (Z - «,)

times (Z - 0 ), the critical points are Z=o(, Z = @, Z-s. 1/2

(«+?), wsOandws V"fa
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(ill) Let "be a complex constant whose polar form Is

Z = veU.
Then, if

the function

maps the point (r,9) in the Z-plane into that point in the

w-plane whose polar coordinates are br, 9 +^• That is , the

mapping consists of a rotation of the radius vector of the

point Z about the origin through the angle > = arg P and an ex

pansion or contraction of the radius vector by the factor b=

| 0|. Every region in the Z-plane is transformed by this rotat

ion and expansion into a geometrically similar region in the

w-plane•

Consider the transformation

w= <TZ,|er| = l,

where A Is a complex number. The above Is a trivial case of

ws^Z, ^jtO and 0 a complex number. Observe dw/dZz &•£ 0.

Thus w = P Z is conformal for all points In the Z-plane.

As a further Illustration consider the straight line

(1) Ax + Cy + D - 0.

Observe that x + iy = Z = 1/(P) w, since w = f Z.

where ^s^1+ i/SZ, w= u+ Iv and p equals the conjugate

of P • But
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Hence

x =1/

and 7 = 1/

How upon substituting in (1) we have

A( JV +J32v) + C( Pjy -^2u) + |/3|3D - 0,

or

(A J3! - C^gju + (A^g + C £x)v +|Hd = o,

which is the straight line obtained under the rotation

w = ? Z.

The function f(Z) = w= ?Z is sometimes referred to as a

rotational contraction or expansion according as \Pl<-' or / ?]>\

If |^l = l, then w * fi Z is a pure rotation.

Note; Th© circle C consisting of the set of all points Z

such that |z - Zol= r with center at Zo and radius r, is trans

formed by

w- / Z

into the circle C consisting of the set of all points w such

that |w/(P) - Zo| s r, with center at ZQ and radius r or

(read the circle C consisting of the set of all points w such

that |w - ^Zo| = |P|r) with center at / Zo and of radiuso

(iv) If we wr ite the transformat ion w-Z+oSasw=TZ

and write w -a fi Z as w =■ SZ, then the transformation

L - TS

is the most general linear transformation. Observe that

LZ = TSZ - T(SZ) =
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and Is therefore a conformal napping. The transformation

L1 = ST

read L prime equals ST is also a linear transformation, since

L'Z = STZ r S(TZ) = S(Z + <* ) « fl (Z + c*) = /3 Z + £«* .

Thus we see that

L» ± L.

The mapping L is conformal for all Z, provided P ± 0.

Moverover L takes straight lines into straight lines and takes

circles into circles. The general mapping

L = J3 Z +**,

consists of a rotation through the angle arg ^ and a magnifica

tion by the factor /#!, followed by a translation through the

vector^ • As an illustration consider the following example.

Example.- Find the image of the rectangle with vertices

Zo « (0 + 0), Z1 = (0 + 21), Z2 = (1 + 21) and Z3 = (1 + 0)

under the transformation

w r: (1 + i)Zk + 2 - i, k = O, 1, 2, 3.

Show the region graphically.

Solution: Observe that in this case ft ■=. (1 + 1) and

of = (2 - 1). Applying this transformation to each of the given

points in the Z-plane we obtain the desired corresponding set

of points in the w-plane

wo -=. I8 Zo + * - (1 + i)(0 + 0) + (2 - i) = (2 - I)

wl = ^ Zl + °^ - (1 + 1)<0 + 21J + (2 - 1) = (0 + i) .

W2 = f3 Z2 + cA = (1 + i)(l + 21) + (2 - 1) = (1 + 21)

w3s J3 Z3 + * - (1 + 1)(1 + 0) + (2 - 1) =• (3 + 0).
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Now observe, arg (1+1) TT/4 and )l + i| = f2~. Therefore

w = (1 + i)Zk + (2 - i), k = 0, 1, 2, 3,

transforms the rectangle with vertices Zo = (0+0), Z^- (0 + 21),

Z2 =. (1 + 21) and Z3 - (1 + 0) into the rectangle with the verti

ces w0 r (2 - 1), wlr (0 + i), wg - (1 + 21) and wg = (3 + 0),

see figure 10.

PIG. 11

IS. The Function w Zn

First we see that the image of any point (r,9) is that

point in the w-plane whose polar coordinates are

VVhere we consider the particular case for n 2, and describe

the transformation in terms of polar coordinates by setting

Z = vJe and w = e*4'* , then P At4>= <*JLl*
In particular the function Z2 maps the entire first quadrant

of the Z-plane, 0^0 ^TT/2, r » 0, upon the entire upper half

plane of the Z-plane(see figure 12).

, pp 67-68.
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Circles about the origin in the Z-plane with radius ro

are transformed into circles about the origin with radius

r~. The semicircular region r £: rQ, 0 £ © ;= TT is mapped onto

the circular region <? £: r2, and the first quadrant of that

semicircular region is mapped onto the upper half of the circu

lar region as indicated in figure 12 by the broken lines.

In each of the above mappings of regions by the transfor

mations w n Z2, there is just on point in the transformed reg

ion corresponding to a given point in the original region and

conversely; thatis, there is a unique one to one correspondence

between points in the two regions. This uniqueness does not

exist, however, for the circular region r £ rQ, 0 <= ©^ 2TT,

and its image P £= r2, since each point w of the latter region

is the image of two points Z and -Z of the former.

In rectangular coordinates the transformation w Z2

becomes

u + iv = (x + iy)2 = x2 - y2 + 2xyi,

then

u = x2 - y2 and v = 2xy#

If Imaginary Z equals y equals zero (the equation of the

real axis), then u = x2 and v - 0, so that the real axis in the

Z-plane is mapped into the negative real axis in the w-plane by

w = Z2.

Whenever u ^ uQ ia a constant greater than zero, then the

equilateral hyperbola u0 = x2 - y2 is mapped into the line u

uQ under the mapping w = Z2 (see figure 13).
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V

0
0

0*

FIG IS

Likewise if v = vQ (a constant) then the equilateral hyperbola

v0 - 2xy is mapped into the line v = v under the mapping

w = Z2.

When n is a positive integer, the transformation

w = Zn, or $&1 - rnA,t'ne

maps the angular region r > 0, 0£i9£ ^M, onto the upper half

of the w-pl&ne (figure 14), since £ = r11 and ^ = nQ. It trans

forms a circular arc

r = ro (©o ^ e e 9O + 2 /n)

Into the circle fr r£. Both mappings are one to one.

t / / / / / t /

FIG. 14

14, !Hie Function w c log Z

In our consideration of the transformation w = log Z, we

restrict ourselves to the principal value of log Z, that is
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- TTfc arg Z £ TT .

We see then, that dw/dZ l/Z, so that the mapping w = log Z

is conformal for all Z =£ 0. Now observe, that

w = log Z = log I v\& , z - |r|4

then w = log r + 19. But w u + iv. Therefore u + iv =. log r +

19 implies that

u = log r and v = 9.

Suppose 9=0, then v = 0 and the mapping w = log Z takes the

positive real axis in the Z-plane into the real axis in the

w-plane•

Now suppose 9 = <A , then v = <* and w - log r + i ot.

PIG. 15

Hence the mapping w = log Z maps the ray 9 =. «*v into the line

parallel to the u-axis, <* units above the u-axis (figure 15).

Example.- Find the image of the circle lzl=tf, where d > 0,

under the mapping w =. log Z.

Solution: Observe that, w = log (X + 19. Hence the circle

IZ I - (I , where A > 0 goes into the segment w - iog ^ + i© where

- 17*. 9 ^7T (see figure 16).
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-(»>* Ijfp)

FIG, 16

15. The Inverse Transformation

The transformation

w = 1/Z or Z =

sets up a one to one correspondence between points in the

Z-plane and points in the w-plane, except for the points Z = 0

and w = 0, which have no image. This mapping is conformal ex

cept at Z = o and w - 0 since dw/(dZ) = -l/Z2.

In polar coordinates the transformation becomes

where Z =-\ Z \t"'9=r a l& , and w = e & u .

When cartesian coordinates are used, the equation

w = u + iv = l/(x + iy)

gives the relations

u ^x/(x2 + y2), v = -y/(x2 + y2)

and

x ^ u/(u2 + v2), y r -v/(u2 + v2).

Example.- Find the image of the straight line

(1) y = rax + b

under the transformation w s: l/Z.
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Solution: Recall

(2) x = <Z - Z)/2 and y r (Z - Z)/2i.

Using 2 we 3ee that (1) becomes

(S) (Z - Z) = im(Z + Z) + 2ib, or

(1 - im)Z - (1 + im)Z - 2ib = 0,

that is

(4) (1m - 1)Z + (Im + 1)Z + 2ib -=. 0.

How under the transformation w = l/Z, equation (4) becomes

(5) 2ibww + (im + l)w + (im - l)w = 0.

Set w u + iv and w = u - iv, the ww » u + v« Thus (5) becomes

(6) 2ib(u2 + v2) + (im + l)(u + iv) + (im - 1)

times (u - iv) = 0,

which becomes

2ib(u + v2) + 2i(mu + v) - 0,

that is

(7) b(u2 + v2) + mu + v = 0.

Observe that, (7) is a olrcle passing through the origin if

b ^ 0 and it is a straight line passing through the origin if

b s 0,

Assume b ^ 0, then

b(u2 + v2) + mu + v «u2 + v2 + mu/b + v/b

u2 + mu/b + v2 + v/b = 0,

which upon completing the square becomes

b[{u2 + mu/b + m2/(4b2)) + ( v2 + r/b + i/(4b2))J-

m2/(4b2) - l/(4b2) = 0.
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Hence equation (7) becomes

(8) (u + m/(2b))2 + (v + l/2b)2

Thus the center of the circle (7) is

and its radius is

Thus we see that the transformation w * l/Z takes the straight

line y a mx + b into the circle b(u2 + v2) + mu + v ■=. 0, if

b ^ 0, and into the straight line mu + v = 0ifb=0.

Exercise.- Find the image of the circle

(1) (x2 + y2) + x + by + c= 0

under the transformation w - l/Z.

Hint: Set x = (Z + Z)/2 and y - (Z - Z)/2. Then (1) be

comes

(Z2 + Z2 + 2ZZ - Z2 - Z2 + 2ZZ) +2 (Z + Z) +

2bi(Z - Z) + 4o s 0,

which becomes

(2) 2ZZ + {4. - bi)Z + ( + bi)Z + 2o s 0,

How under the transformation w = l/Z, (2) becomes

(3) 2cww + (<X+ bi)w + («.- bi)w + 2.

Note that (3) is a straight line through the origin if

c = 0, and is a circle not passing through the origin If c ^0.

Put (3) in the standard form and find the center and radi

us for the case where c^O.

16. Inversion Transformation With Respect to a Given Circle

Consider the circle C:|Z| = R. Let Z be any point exterior
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pm 17

to C. Draw from Z, tangents t 0, at 7>i and Z2. Then connect

to Zgj the point Z», of the intersection Z1# Zg and ZO is the

inverse point to Z and points Z and Zf are caUied conjugate

points. Every point lying on the cirounference of C is its own

conjugate.

We claim that

where Z and Z' are conjugate points relative to circle 0.

Proof: Triangle Z^OZ1 is similar to triangle ZOZ1# since

their corresponding angles are equal, that is,

angle OZ'Z-l equals angle Z'Z-^Z,

angle OZ^Z1 equals angle Z'ZZ^, and

angle Z^OZ* belongs to both the triangles.

Hence

(€%)/ (OZ) - (0Z«) / (0Zx),

that is IZ| |Z'I ^IZil*-: R2# Th©refore |Z\ |z«l = R2. If R - 1,

then |Z'| s 1/Z, since |Z\ |Z'I - 1 and IZ'I = l/z, if R - 1.

Thus the inversion transformation is conformal, since
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arg Z = arg Z1.

In the inverse transformation w =. l/Z the arg w -= - arg Z

and |w|.= 1/ Z. The inversion transformation maps every point

inside a circle in the Z-plane outside a specific circle in the

w-plane and maps every point outside a given circle in the

Z-plane inside a specific circle in the w-plane.

The point w ■=. 0 is not mapped into any point in the finite

Z-plane• However if we make the radius of the circle in the

Z-plane sufficiently large, the images of all points Z outside

the large circle are made to fall within an arbitrarily small

neighborhood of the point vxO.

Formally, the point Z-o* ia the image of the point w ■=. 0

under the transformation w — l/Z. That is, whenever a state

ment is made about the behavior of a function at Z - &* 9 we

mean precisly the behavior of the function at Z1 =. 0, where Z1

is l/Z.

17• Bilinear Transformations

The transformation

where ^ » ^ ) V and are complex constants, is called the

linear fractional transformation or the bilinear transformation.

We abbreviate it w jsT(Z). observe that

— (3jT=.O, then dw^Z — 0 for all Z in the complex
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plane. Hence

1* +<$ ~L>
Where C is some complex constant. Therefore °(Z + <3 =?C()TZ

that is

is either a constant or meaningless if ty^1 - ft x — 0.

By considering

j

we easily see that we can let Z =? - 9V corresponds to

We claim that

W -

is a one to one mapping.

Proof: Suppose there exist distinct points ZQ and Z^. such

that w0 s. w^, that is

Thus we have a contradiction since we assumed ZQ and Z, to be

distinct points. Therefore
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- fit *0

is a one to one mapping.

The bilinear transformation always transforms circles into

circles and lines into lines.

Solving the equation

for Z in terms of w, we have

WIT* + W«S =- 0(

which is the same form as

In one we see that we may let w » °^( corresponds to Z =.

We want to show now that the bilinear transformation is

a product of inversions, translations and rotations.

We introduce the following notations:

Let (i) TaZ - Z + 6L , where 0. is a complex number,

(ii) S^Z s bZ, where b is a complex number,

(iii) Vz s. 1/Z.

Proof: (i) Suppose i -jfe 0. Then
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Set ^ =.*(£-(* Jf. Now observe that,

and

y4 r ^

upon applying an inversion to the above we have

Now upon applying the rotation S_.£ and then the translation

to the above we have
r

"* _ -A

and

but since ^ =- <VnT—/S JT» we have

(ii) Now suppose T— 0. Then since <XJ — (3 f^ 0, we must

have 0( -gfe. 0 and sf ^* 0, so that the following situation exists;
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Hence

We may therefore conclude that the bilinear transformation is

a product of inversions, translations and rotations. Q.E.D.

The bilinear transformation is the most general mapping

that takes circles into circles. We now define cross-ratio.

Definition.- Let Zlf Zg, Z3, and Z4 be four distinct points

in the Z-plane, then any expression of the form

is called the cross-ratio of the points Zi, Z2f Z5 and Z4.

Maeorem.-The cross-ratio is invariant under the bilinear

transformation•

Proof: Let Zi, Z2, Z3 and Z4 be any distinct points in

the Z-plane and let wi, w2# w3 and w4 be their correlates in

the w-plane.

We want to that

Recall that

w. -

*- ~ ^^ . , 0 ) where i =. 1, 2, 3, and 4

Observe that
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j andjl and j &. 1, 2, 3, and 4. Then

Now we have

W3 -

Therefore our assertion, Q.E.D.

Note that under the bi3.inear mapping thre« distinct points

are independent, that is, three distinct points determin the

bilinear mapping. Thus if we are given any three distinct points

in the Z-plane, say Zlt Z2, and Z3, there exist a bilinear map

taking Z1 —nrlt Zg—» w2, and Z3 —jw3.

Example.- Consider the points Z =1, o, and ©*> , Find a

bilinear mapping which takes 1 1 0, 0 i 1, and oo » l.

Solution: In

Let Z4 - Z and w4 -=. w. Then observe that with the proper
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lnterpertatlon the following is true:

———— • ■ ■ — ———— .

where ^"^ goes to 1.

which implies that w(i - 1) - wi(l - Z) - i(l - Z).

Hence

Be - i Z +c

Note that if (i) Z * 1, then w =- 0/(1 + i) ^ o,

(ii) Z x 0, then w = -l/i = -i/-l - i,

(iii) Z = ce , then w - ( c* - l)/( <>^ + i) = l.

Exercise.- Find the mobius (bilinear) transformation which

takes the set of points (a, b, o) in the Z-plane into the set

of points (0, 1, «») in the w-plane.

18» Some Special Conformal Transformations

(i) Take the unit circle into the unit circle. Note that

inverse points under a bilinear transformation go into inverse

points. The inverse of (£) is suchA.ai-l, that is

Qj > 0

We want a bilinear transformation which takes a, > o and

» «*» (see figure 18).

The transformation

t
CO
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PIG. 18

is such a mapping but we want to determine the constant K.

Observe that

- a,

- ifc&l
Z-cu

for Z = 1 we must have

Hence . Therefore

w =

is the general bilinear transformation which takes the unit

circle \Z\ ^ 1 into the unit circle |w| ^ 1.

(il) Find the bilinear transformat iom which takes the upper

half- plane (z-plane) into the unit circle (In the w-plane).

See figure 19.

Z-plane

'///1J/I////J

w-plane

PIG. 19
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Since the upper half-plane may be consicLered as a circle

with an infinite radius, the inverse of is the complex con

jugate of • Hence we want a mapping taking

a > o

a, ■? <p .

The mapping which does the above is

2 - a.
■"" TT

B -a.

then

For Z - 0, 1 =|w| = |KHf|-L|4
Hence K=j&'1 and wsrjfc* £-<*,/£-5: is the mapping which takes

imaginary Z 2 0 into (Zj e 1.

Example.- Find a conformal mapping of the region in fig

ure 20, into the unit circle.

Z-plane

assume, -t*. fc«

FIG. 20

(i) cr _ &l(~^)g a j^"c ^. is a rotation of all points

longing to the region G of figure 20 through an angle of
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in the 2-plane (see figure 21),

cr- plane

(llj/.cr-'.A-^
PIG. 21

, is a magnification of G into the

upper half-plane (Se© figure 22).

— plane

PIG. 22

- o

is the desired transformation of the region G of the Z-plane

into the unit circle in the w-plane.

Exercise.- Find the bilinear transformation which takes

the region G in (figure 23) the Z-plane into the unit circle
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in the w-plane.

FIG. 23

19. Tnvflpaa Points With Respect to a Circle

Theorem.- If p and q are inverse points with respect to
si

the circle C: |Z - Z|=P, then |p - Zo| |q - Zo | =? •

PIG. 24

Proof: Our hypothesis implies that

P = t$.£A

and

■*.*

Let Z be any point on C, then consider
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but Z = Zo + %tl

Thus we see that

1/.^ =

Therefore
"" £

.P
it'*~ejt<* =ir

is another form of the equation of the circle of inversion

with respect to which p and q are inverse points. Q.E.D,

is the equation of a circle, then the bilinear transformation

takes it into a circle and its inverse points into inverse

points.

Proof: Consider the equation

Recall that the transformation (/}

ZzZ.

maps straight lines into straight lines and circles into circles

into circles. Thus 0: lz - zj = -e is mapped into its image

circle in the w-plane by

(1) |/t/= <**■+ P

We want to show that under the bilinear mapping (1), points p

and q go into a pair of inverse points p» and q«. observe that

solving (1) for Z we obtain
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Thus

- f<

goes into

YU>-

a

I w-

rP

Thus

= k

(2) e*« -f

Therefore, since (2) is a form of the equation of the

circle with respect to p1 and q1 as inverse points ( L is a

complex constant), we may conclude that the our assertion holds,

2©. The Function w - Z^ and w si/

The multiple-valued function w = Z"s ■= y YQ. «j- where Z =

vt*~&, takes on two values at each point Z except the origin,

depending on the choice of ©• One value is the negative of the
(16)

other because xr ^changes in sign alone when 9 is Increased by

27T.

Set Z s x + iy and w = u + iv. Then

w2 s Z implies that u2 - v2 + 2iuv = x + iy, which implies
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that (1) x = u - v and (2) y =: 2uv« Suppose we were to

square y. Then y2 = 4u v. But from (1) we have that

V2 as. U2 - X, SO that

y2 = 4u2(u2 - x)

If u - 0, then from (1) x •=. -v2 and (2) becomes y .r 0»

Then the nonepositive real axis in the Z-plane goes into the

imaginary axis in the w-plane under the mapping w •= Z^«

y.

/

-

PIG. 25

If us uo (a constant), then the transformation

w s Z®

takes all the points belonging to the region outside the

parabola y2 s u2(u0 - x) into the real part of w greater than

or equal to u0 if uo < 0 and into the real part of w less than

or equal to uo if u0 is negative (see figure 25).

Now we consider the transformation w ».£*, or

where Z - x + iy. Thus w=r^, can be written JT= £• , ^ - y.

Suppose y - yo (a constant). Then we see that under the

transformation w -^*, the line y= yo goes into the ray

How suppose we fix x, that is x - xQ (a constant), then

P. - «<•
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Thus we see that the line x = xo goes into the circle

see figure 26.

% U

PIG. 26

We now consider some transformations of particular re

gions by w -& •

(i) The strip - «*> ^ x^+e^, 06y^7T, is transformed

by w;£ into the imaginary axis greater than or equal to zero.,

that is the upper half-plane minus the negative real axis.

(ii) The strip - «* *■ x£0, 0 £• y ^ 1, is transformed

by w -s.£j into lwl-1, where 6 £ arg w<r77»

21. The function w = Z + l/Z

A -*'&
Set Z s rJK , then l/Z - l/(r)jg , and w = r +

But w = u + iv, hence

(1) u ■=. (r + l/r) cos ©, and

(2) v s (r - l/r) sin ©.

Suppose r - 1. Then w = 2 cos 6. Thus we see that

w r 2 cos 9
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traverses the interval between -2 and +2 twice as 9 ranges

over the interval [p, 2JTJ, (see figure 27)

a.*-

= a-*

PIG. 27

Suppose r ^ 1, then

(1)

which is the equation of an ellips in the w-plane. How observe

c2 - a2 - b2 (where c2 are the foci)

(r + l/r)2 - (r - l/r)2- 4,

where a ■= (r + l/r) and b = (r - l/r), we have that c = *2, so

that the foci of the ellipse are at -2 and +2. This ellipse

goes into the interval -2 tt u * +2, as r approaches 1.

If r <. 1 we get the same set of ellipses as in the case

where r 7 1. The limit of the interior of the unit circle goes

into the interval -2 £ u < +2, and the limit of the exterior

of the unit circle goes into the same region. Thus the region

inside the unit circle the whole w-plane Exclusive of the

interval w - 2 cos 9, 0 £ 9 ^ 277".

22 Some Spec lalJExamples _

(i) If w = cosh Z, prove that the area of the region of
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the w-plane which corresponds to the rectangle bounded by the

lines x - 0, x^ 2, y s. 0 and j^ 1/4^ Is

ft sinh ¥ -_g

Proof: Let A represente the rectangle In the Z-plane

bounded by the sides x -s 0, x -a 2, y - 0, and y ^ 1/4TT . Let

D be the closed domain of the w-plane which corresponds to A .

Since f «(Z) -^ 0 and A and D are closed we have that

where A is the area of D. Observe f »(Z) - ux + ivx and

~ u|

Thus (1) becomes

ffMJ
Now observe

How recall,

and

Thus

Hence

and

w - oosh Z a cosh(x + iy)

s. cosh x cosh iy + sinh x sinh iy.

cosh r j: * "*> , then cosh iy = i-—

sinh r - 4 ~*»- , then sinh iy - —
3. ^

w - cosh x cos y + i sinh x sin y.

u ■- cosh x cos y, v — sinh x sin y,

■= sinh x 4sos y , vx — cosh x sin y.

** -9"^
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Thus we have

How

u| + v| & sinh2 x cos2 y + cosh2 x sin2 y

c sinh2 x - sinh2 x sin2 y + cosh2x sln2y

ssinh2 x + sinh2 y (cosh2 x - sinh2 x)

ssinh2 x + sin2 y
t

r=- 1/2 [(cosh 2x - 1) + 1 - cos 2yJ

^ 1/2(cosh2 x - cos 2y).

9 J. [ySM ♦-*''•*/]//
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