SPECTRAL ANALYSIS IN HILBERT SPACES

A THESIS

SUBMITTED TO THE FACULTY OF ATLANTA' UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE

BY

GERMAINE A. DICKINSON

DEPARTMENT OF MATHEMATICS

ATLANTA, GEORGIA
AUGUST 1972

$$
R=-{ }^{\text {ACCusing } 1992} T=29
$$

TABLE OF CONTENTS

Page
Chapter
I. ELEMENTARY THEORY OF COMPACT OPERATORS 1
Basic Topological Concepts 1
Completely Continuous Operators. 2
II. BASIC CONCEPTS OF ADJOINT AND SELF-ADJOINT OPERATORS 6
Adjoint Operators 6
Eigenvalues 9
III. THE SPECTRUM OF A SELF-ADJOINT OPERATOR 20
Operator Polynomials 20
The Spectrum and Regular Values of a Self- Adjoint Operator 22
BIBLIOGRAPHY 29

CHAPTER I

ELEMENTARY THEORY OF COMPACT OPERATORS

1.1 Basic Topological Concepts:

Before presenting special topics concerning spectral theory in Hilbert Spaces, we shall introduce several preliminary definitions and lemmas which shall be referred to throughout the thesis.

Definition 1.1.1: The finite set M is called an 6 net for the set E if there exists for every point x in E a point F in M such that $(x, F)<E$. If Enet exists for E, then E is called totally bounded.

Lemma 1.1.2: A normed linear space X is a metric space with the metric defined by

$$
\rho(x, y)=\|x-y\|
$$

Lemma 1.1.3: A sequentially compact subset of a metric space is totally bounded.

Lemma 1.1.4: If Y is a compact set of a metric space X, then Y is separable.

Theorem 1.1.5: A necessary and sufficient condition for a subset E of a Metric space X to be compact is that for each $\mathrm{E}>0$, there exists in X a finite $E-n e t$ for E. The condition is also sufficient if X is a complete space.

Theorem 1.1.6: For any two elements in a Hilbert Space H,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

Lemma 1.1.7: Let x be in a Hilbert Space X and let P be a projection operator. If $\mathrm{x} \perp \mathrm{H}_{0}$, then $\mathrm{Px}=0$.

1.2 Completely Continuous Operators

Definition 1.2.1: A continuous operator U mapping a normed linear space X into a normed linear space Y is called completely continuous if it transforms every bounded set in X into a compact set in Y.

Theorem 1.2.2: If U is a completely continuous operator mapping the normed linear space X into the normed linear space Y, then \mathbb{Z} the range of U is separable.

Proof: Let S be the set $U C K$ in the space Y, where K represents the sphere in X with center at 0 and with radius r. Hence

$$
S_{n}=\left\{y=U(x): \quad x \varepsilon K_{n}\right\}
$$

Since

$$
\begin{aligned}
& X=\bigcup_{n=1}^{\infty} K_{n}, \\
& E=U(X)=U\left(\bigcup_{n=1}^{\infty} K_{n}\right)=\bigcup_{n=1}^{\infty}\left(U\left(K_{n}\right)\right)=\bigcup_{n=1}^{\infty} S_{n} .
\end{aligned}
$$

But S_{n} is compact by compactness of U. Therefore S_{n} has an t-net F_{n}. Let $D=U F_{n}$. Then D is countable and dense. Hence S_{\sim} is separable. Therefore $\mathbb{Z}=\sum_{n=1}^{\infty} S_{n}$ is separable.

Theorem 1.2.3: Let $\mathrm{J}=\alpha \mathrm{U}_{1}+\mathrm{BU}_{2}$ be a linear combination of completely continuous operators. Then U is completely continuous.

Proof: Let E be a bounded set. Let $\left\{y_{n}\right\} \subset U(E)$. Then,

$$
\begin{aligned}
\mathrm{y}_{n}=\alpha\left(\mathrm{U},\left(\mathrm{x}_{n}\right)+\mathrm{BU}_{2}\left(\mathrm{x}_{n}\right),\right. & \text { where } \mathrm{x}_{n} \varepsilon \mathrm{E} \\
& \text { for } n=1,2, \ldots .
\end{aligned}
$$

Since U_{1} and U_{2} are completely continuous, we can choose from the sequences $\left\{U_{,}\left(x_{n}\right)\right\},\left\{U_{2}\left(x_{n}\right)\right\}$ convergent subsequences $\left\{U_{1}\left(x_{n_{j}}\right), U_{2}\left(x_{n_{j i}}\right)\right.$ respectively. Hence the sequence $\left\{U_{i}\left(x_{n} j_{i}\right)\right\}_{i s}$ convergent. This implies that U (E) is compact. Hence U is completely continuous.

Let U and V be linear operators from X into Y and Y into Z, respectively. Let one of these operators be completely continuous then VU is also completely continuous.

Proof: Let U be completely continuous and V continuous. Let E be bounded. Let X_{n} be in $E, n=1,2,3 \ldots$

Since U is completely continuous, we choose from the sequence $\left\{U\left(x_{n}\right)\right\}$ a convergent subsequence $U\left(x_{n i}\right)$ Let

$$
U .\left(x_{n k}\right) \longrightarrow y_{0}, \quad \text { for } y_{0} \varepsilon Y_{0}
$$

Then

$$
V U x_{n_{k}}=V\left(U x_{n_{k}}\right)
$$

Since V is continuous

$$
V\left(U x_{A_{k}}\right) \rightarrow V\left(y_{0}\right) .
$$

Hence $V(U(E)$ is sequentially compact. Thus $V U$ is completely continuous.

Let V be completely continuous. Let E be a bounded set. Since, U is a bounded linear operator, E is transformed into a bounded set by $U, i . e ., U(E)$ is bounded. Since V is completely continuous, $\mathrm{VU}(\mathrm{E})$ is compact. Hence VU is completely continuous.

Theorem 1.2.4: Let $\left\{U_{n}\right\}$ be a sequence of bounded linear operators from a complete space X into a space Y such that $U_{n} \rightarrow U$ (in the space of operators $[X \longrightarrow Y]$). If the $U_{n},(n=1,2, \ldots)$ are completely continuous, then U is also completely continuous.

Proof: Let S represent the unit sphere of the space X.
It is only necessary to show that $U(S)$ is compact.
Since U_{n} is convergent, for tother exists n_{0} >osuch that
(1.2.4) $\| U_{n_{0}}-U / / \leq t / 2$.

Let $y=U x$ where $x \varepsilon S$. Let $y n_{0}=J_{n_{0}} X$. Then using (1.2.4) we have

5

$$
\begin{aligned}
(1.2 .5)\left\|y-\mathrm{y}_{n_{0}}\right\| & =\| \mathrm{U}(\mathrm{x})-\mathrm{U}_{n_{0}}(\mathrm{x}) / / \\
& \leq\left\|\mathrm{U}-\mathrm{U}_{n_{0}}\right\| \quad \| \mathrm{x} / / \\
& <t / 2
\end{aligned}
$$

Since $U_{n_{0}}$ is compact, $U_{n_{0}}(S)$ is compact. But then there exists an $t / 2$ net $F_{f}=\left\{z_{1}, z_{2}, \ldots z_{n}\right\}$ of $U_{h_{0}}(S)$. Hence there exists $Z_{i_{0}} \varepsilon F_{\notin}$ such that

$$
\begin{equation*}
\left\|y_{n_{0}}-z_{i_{0}}\right\|<t / 2 \tag{1.2.6}
\end{equation*}
$$

But

$$
\left\|y-z_{i 0}\right\| \leq\left\|y-y_{n_{0}}\right\|+\left\|y_{n_{0}}-z_{i_{0}}\right\|<t / 2+t / 2=\epsilon
$$

$$
\text { by }(1.2 .5) \text { and }(1.2 .6)
$$

Thus F_{t} is an t-net for $U(S)$. Therefore $U(S)$ is compact by theorem (1.2.5) Hence U is completely continuous.

2.1 Adjoint Operators:

Definition 2.1.1: Let X, Y be Hilbert Spaces. Let
U be a bounded linear operator from X into Y and let y be
in Y. Define

$$
x^{\prime}(x)=(U x, y) .
$$

x is clearly a linear functional.
Moreover,

$$
\left|x^{\prime}(x)\right|=|(U x y)| \leq\|x\|\|y\| \leq\|u /\| y\| \| x \| .
$$

Hence

$$
\left\|x^{\prime}\right\| \leq\|v\|\|y\|
$$

Thus x^{\prime} is bounded and $x^{\prime} \varepsilon X$. By Riesz-Frechet Theorem there exists a unique z in X such that $\left\|x^{\prime} /\right\|=\| z / /$ and $x^{\prime}(x)=(x, z)$ for all x in X. Let U^{*} be a mapping from Y into X defined by

$$
u^{*} y=z
$$

Thus

$$
(2.1 .2)(U x, y)=\left(x, U^{*} y\right) \text { for all } x \in X, y \in Y \text {. }
$$

σ^{*} is called the adjoint of U.
Theorem 2.1.3: The adjoint operator U^{*} mappings I into X is a linear operator and

$$
\left\|U^{*}\right\|=\|U\|
$$

Proof: (a) By (2.1.2)

$$
\left(u x_{1} y_{1}+y_{2}\right)=\left(x_{1} u^{*}\left(y_{1}+y_{2}\right)\right.
$$

But also

$$
\begin{aligned}
\left(U x, y_{1}+y_{2}\right) & =\left(U x, y_{1}\right)+\left(U x, y_{2}\right) \\
& =\left(x, U^{*} y_{1}\right)+\left(x, U^{*} y_{2}\right) \\
& =\left(x, U^{*} y_{1}+U^{*} y_{2}\right) .
\end{aligned}
$$

Hence

$$
\left(x, U^{*}\left(y_{1}+y_{2}\right)\right)=\left(x_{1} U^{*} y_{1}+U^{*} y_{2}\right) .
$$

Therefore

$$
\left(x, u^{*}\left(y_{1}+y_{2}\right)\right)-\left(x_{1} U^{*} y_{1}+U \quad U \quad y_{2}\right)=0
$$

This implies

$$
\begin{aligned}
\left(x, \tilde{0}^{*}\left(y_{1}+y_{0}\right)-\left(u^{*} y_{1}+u^{*} y_{2}\right)=0\right. & \text { for all } \\
& x \in X .
\end{aligned}
$$

Therefore,

$$
U^{*}\left(y_{1}+y_{2}\right)-\left(U^{*} y_{1}+U_{2}^{*} y_{2}\right)=0
$$

Consequently,

$$
U^{*}\left(y_{1}+y_{2}\right)=U^{*} y_{1}+U^{*} y_{2}
$$

(b) We know

$$
(U x, q y)=\left(x, U^{*}(q y)\right) .
$$

Also

$$
\begin{aligned}
(U \mathrm{x}, \propto \mathrm{y}) & =\bar{q}(U \mathrm{x}, \mathrm{y})=\bar{\alpha}\left(\mathrm{x}, U^{*} \mathrm{y}\right) \\
& =\left(\mathrm{x}, \alpha U^{*} \mathrm{y}\right) .
\end{aligned}
$$

Hence

$$
\left(x, U^{*}(q y)\right)=\left(x, \alpha U^{*} y\right) .
$$

This implies

$$
U^{*}(\alpha y)=\alpha U^{*} y .
$$

Therefore U^{*} is a linear operator.
We now show that $\left\|U^{*}\right\|=\|U\|$.
Putting $X=U^{*} y$ in (2.1.2), we get

$$
\left(U^{*} y, U^{*} y\right)=\left(U^{*} y, y\right)
$$

Hence

$$
\begin{aligned}
\left\|U^{*} \mathrm{y}\right\|^{2} & =/\left(\mathrm{UU}_{\mathrm{y}, \mathrm{y}}^{*}\right) \mid \\
& \leq\left\|\mathrm{U} \mathrm{U}^{*} \mathrm{y}\right\|\|\mathrm{y}\| \\
& \leq\|\mathrm{U}\|\left\|\mathrm{U}^{*} \mathrm{y}\right\|\|\mathrm{y}\|
\end{aligned}
$$

Therefore

$$
\left\|\mathrm{u}^{*} \mathrm{y}\right\| \leq\|\mathrm{u}\|\|\mathrm{y}\|
$$

Thus

$$
\left\|U^{*}\right\|=\|U\| .
$$

(c) Putting $y=U x$ in (2.1.2) we get

$$
(U x, U x) \quad\left(x, U^{*} U x\right)
$$

or

$$
\begin{aligned}
\|U x\|^{2} & =\left|\left(x U_{U}^{*} U X\right)\right| \leq\|x\|\left\|U^{*} U x\right\| \\
& \leq\|x\|\left\|U^{*}\right\|\|U x\| \cdot
\end{aligned}
$$

Hence

$$
\|\mathrm{Ux}\| \leq\|\mathrm{x}\|\|\mathrm{U}\|
$$

This implies

$$
\|U\| \leq\left\|U^{*}\right\| .
$$

Thus

$$
\left\|U^{*} / /=\right\| \mathrm{U} / / .
$$

Definition 2.1.4: Denote the second adjoint of U by $U^{* *}$ and define it in the same manner as the adjoint $U^{*}{ }^{*}$ with $\mathrm{U}^{* *} ; \mathrm{X} \rightarrow \mathrm{Y}$.

Theorem 2.1.5: $\mathrm{U}^{* *}=\mathrm{U}$.
Proof: ($U^{*} y, x$) ($\left.y, U^{* *} x\right)$.
Also

$$
(y, U x)=\left(\overline{U x, y)}=\left(\overline{x, U^{*} y}\right)=\left(U^{H} y, x\right) .\right.
$$

Therefore

$$
(y, U x)\left(y, U^{* *} x\right) \text { for all } x \in X, y \in Y \text {. }
$$

Hence

$$
u=U^{\star} \notin .
$$

2. 2 Eigenvalues

Definition 2.2.1: An eigenvalue of an operator U is a number λ such that there exist an element $x_{0} f 0$ with the property (2.2.2) $U X_{0}=\lambda X_{0}$.

An element x for which (2.2.2) holds is termed an eigenvector corresponding to the given eigenvalue λ.

The eigenvectors corresponding to a given eigenvalue
λ form a space called the eigenspace H_{λ}.
Lemma 2.2.3: If U is self-adjoint then;
$(U x, y)=\frac{1}{4}[(U(x, y), x+y)-(U(x-y), x-y)]$

$$
+[(U(x+i y), x+\dot{c} y)-(U(x-i y), x-i y)]
$$

Proof: Proof is trivial,

Theorem 2.2.4: If U is a self-adjoint operator, then

$$
\|U\|=\sup _{\|x\|=1}|(U x, x)|
$$

Proof: Let $Q=\sup /((x x) /$ where $\| x / /=1$. Then

$$
|(U x, x)| \leq\|U x /\| x\|=\| U x\|\leq\| U\| \| x\|=\| \mathrm{U} \|
$$

Therefore

$$
(2.2 .5) Q=\sup |(U x, x)| \leq \| U / / .
$$

We first observe that if U is self-adjoint
then

$$
(2.2 .6)(U x, x)=(x, U x)=\overline{(U x, x J} \Rightarrow(U x, x) \text { is real. }
$$

From lemma 2.2.3

$$
\begin{aligned}
(U x, y)= & \frac{1}{4}[(U(x+y), x+y)-(U(x-y), x-y)] \\
& +i\left[U\left(x+y_{i}^{\prime}\right), x+y_{c}^{\prime}\right)-\left(U\left(x-y^{\prime}\right), x-y_{c}^{\prime}\right) .
\end{aligned}
$$

Considering (2.2.6),

$$
\begin{aligned}
\operatorname{Re}(U x, y) & =\frac{1}{4}[(U(x+y, x+y)-(U(x-y), x-y)] \\
& \left.\leq \frac{1}{4} Q[(x+y), x+y)-(x-y, x-y)\right] \\
& =\frac{1}{4} Q\left[\|x+y\|^{2}+\|x-y\|^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4} Q\left[2\|x\|^{2}+2\|\mathrm{y}\|^{2}\right] \\
& =\frac{1}{2} Q\left[\|\mathrm{x}\|^{2}+\|\mathrm{y}\|^{2}\right] .
\end{aligned}
$$

Let $\|x\|=1$ and $y=U x / / / J x / /)$
Then

$$
\begin{aligned}
\|U x\|=\operatorname{Re}(U x, y) & \underline{2} Q\left[\|x\|^{2}+\|y\|^{2}\right] \\
& =\frac{1}{2} Q \cdot\left[1+\| \frac{U x \|^{2}}{\|U x\|^{2}}\right] \\
& =\frac{1}{2} Q[1+\| Q
\end{aligned}
$$

Therefore
(2.2.7)

$$
/ / \cup / / \leq Q .
$$

Hence

$$
\| U / /=Q .
$$

Theorem 2.2.8: The eigenvalues of the operator U are real.

Proof: Let λ be an eigenvalue. Then there exists $x_{0} \neq 0$ such that

$$
\begin{gathered}
U x_{0}=\lambda x_{0} \text {. Let } x=x_{0} / \| x / / 0 \text {. Then } \\
\|x\|=1 \quad \text { and } U x=\lambda x \text {. But then } \\
\begin{aligned}
(2.2 .9) \quad(U x, x) & =(\lambda x, x)=(\lambda x, x)=\lambda(x, x) \\
& =\lambda / x\| \|^{2}=\lambda .
\end{aligned}
\end{gathered}
$$

Since U is a self-adjoint ($U x, x$) is real and hence 亿 is real.

Theorem 2.2.10: Let $H_{\lambda_{1}}$ and $H_{\lambda_{2}}$ be eigensubspaces corresponding to different eigenvalues λ_{1} and λ_{2} of the operator U. Then H_{λ}, is orthogonal to $H_{\lambda_{2}}$

Proof: Let x be in $H_{\lambda_{1}}$ and y in $H_{\lambda_{2}}$. Then

$$
U x=\lambda_{1} x \quad \text { and } \quad U y=\lambda_{2} y .
$$

Therefore if $\lambda_{1} \neq 0$ then

$$
\begin{aligned}
\lambda_{1}(x, y) & =\left(\lambda_{1} x, y\right)=(0 x, y)=(x, U y) \\
& =\left(x, \lambda_{2} y\right)=\bar{\lambda}_{2}(x, y) \\
& =\lambda_{2}(x, y) .
\end{aligned}
$$

Thus

$$
\left(\lambda_{1}-\lambda_{2}\right)(x, y)=0
$$

This implies $\left(x_{1} y\right)=0$, since $\lambda_{1} \neq \lambda_{2}$ by asumpetion.

Therefore $H_{\lambda_{1}}$ and $H_{\lambda_{2}}$ are orthogonal.
Theorem 2.2.11: A completely continuous self-adjoint operator U has at least one eigenvalue.

Proof: If $U=0$ then $\lambda=0$ is obviously the eigenvalue because

$$
U x_{0}=\lambda x_{0}, \text { for any } x_{0} \neq 0
$$

Let $U \neq 0$ and define
$m=\operatorname{in} \underset{\||x|=1}{f}(U x, x)$ and $M=\sup _{\| / \mid /=1}(U x, x)$.
Then by Theorem 2.2.4

$$
\|U\|=\operatorname{Sup} \mid(U x, x) /
$$

But if $|m|<M$, then $M \geq m \geq 0$ and
$|(U x, x)|=(U x, x) \varepsilon[m, M]$.
Therefore $\sup _{/ / \mathrm{x} / /=1}|(U \mathrm{x}, \mathrm{x})|=M$.
Also, if $|\mathrm{m}|>\mathrm{M}$ implies $\mathrm{M}<\mathrm{O}$.
Then $\quad \sup _{\|x\||l|}|(U x, x)|=\mid M / \sigma$
Hence

$$
\|U\|=\max [|\mathrm{m}|, \mathrm{M}]
$$

Define

$$
\lambda_{1}= \begin{cases}\mathrm{m} & \text { if }\|\mathrm{U}\|=|\mathrm{m}| \\ \mathrm{M} & \text { if }\|\mathrm{U}\|=\mathrm{m}\end{cases}
$$

We show that λ is an eigenvalue of the operator U.
Let $\|U /\|=M$. Then from the definition of M there exists a sequence $\left\{x_{n}\right\}$ with $\left\|x_{N}\right\|=1$ such that (2.2.12) ($U x_{n}, x_{n}$) $\longrightarrow M=\lambda$.

We can extract from the sequence $\left\{U x_{n}\right\}$ a convergent subsequence since U is completely continuous and $\left\{x_{n}\right\}$ is bounded.

Let $\left\{\mathrm{Ux}_{h}\right\}$ denote this subsequence which converges to y_{0}. Then

14

$$
\begin{aligned}
\left\|U x_{n}-\lambda_{1} x_{n}\right\|^{2} & =\left\|U x_{n}\right\|^{2}-2 \lambda_{1}\left(U x_{n} x_{n}\right)+\lambda_{1} \\
& \leq\|U\|^{2}-2 \lambda,\left(U x_{n} x_{n}\right)+\lambda_{1}^{2} \rightarrow\|U\|^{2}-2 \lambda^{2}+\lambda^{2} \\
& =0 .
\end{aligned}
$$

Hence

$$
U x_{n}-\lambda x_{n} \longrightarrow \text { 0. }
$$

Therefore

$$
\begin{aligned}
x_{n} & =\frac{1}{\lambda_{1}}\left[U_{x_{n}}-\left(U \mathrm{x}_{n}-\lambda \mathrm{x}_{n}\right) \rightarrow \frac{1}{\lambda}[\mathrm{y}-0]\right. \\
& =\mathrm{y}_{0} / \lambda \quad \text { since } U \text { is bounded. }
\end{aligned}
$$

Let $x_{0}=y_{0} / \lambda_{1}$. Hence $x_{n} \rightarrow x_{0}$
Since U is a continuous operator

$$
\mathrm{Ux}_{n} \rightarrow \mathrm{Ux}_{0} .
$$

Therefore

$$
U x_{0}=y_{0}=\lambda x_{0} .
$$

Since $\left\|x_{0}\right\|=1, \quad x_{0} \neq 0$.
Therefore, λ, is an eigenvalue.

Definition 2.2.13: Let M be a closed linear subspace of a Hilbert Space. Then every x in H can be written uniquely in the form $x=y+z$, where y in M, z in M^{\perp}. Point y is called the "Projection" of x in M, and the operator P given by $\mathrm{Px}=\mathrm{y}$ is called the "projection" on M . Let P_{λ} be the projection on the eigensubspace H_{λ}.

Theorem 2.2.14: Let U be a completely continuous selfadjoint operator, then the set of eigenvalues of U is not more than countable and
(2.2.15) $U=\sum_{n} \lambda_{n} P_{\lambda_{n}}$
where λ_{0}, λ_{2}, ... are different eigenvalues of U and convergence is in operator norm.

Let λ be an eigenvalue of U.
Then
(2.2.16) $\lambda P_{\lambda}=U P_{\lambda}=P_{\lambda} U$,
since for $P_{\lambda} x$ in H_{λ} and any x in H,

$$
U P_{\lambda} x=\lambda P_{\lambda} x
$$

and $U P_{\lambda}=\lambda P_{\lambda}$ is self-adjoint, and hence P_{λ} and U are permutable.

Let
(2.2.17) $U_{2}=U_{1}-\lambda_{1} P_{\lambda_{1}}$ where $U_{1}=U$. Using (2.2.16) and letting $\hat{P}=I-P_{\lambda}, I$ being the identity operator then, (2.2.18) $\quad \mathrm{U}_{2}=\widetilde{P}_{1}=\mathrm{U}_{1} \widetilde{\mathrm{P}}_{1}$
hence U_{2} is also self-adjoint. By Theorem 1.2.3 U_{2} is also completely continuous and with (2.2.18) we have

$$
\left\|\sigma_{2}\right\| \leq\left\|\widetilde{P}, \sigma_{1}\right\| \leq\|\widetilde{P},\| \quad\left\|\mathrm{U}_{1}\right\| \leq\left\|\mathrm{U}_{1}\right\| .
$$

Theorem 2.2.11 applied to U_{2} gives us its numerically greatest eigenvalue, call it λ_{2}. Since $\left|\lambda_{1}\right|=\left|\left|U_{1}\right|\right|$ and $\left|\lambda_{2}\right|=\left\|U_{2}\right\| \mid$

$$
\left|\lambda_{1}\right| \geq \mid \lambda_{2}!
$$

It remains to show that $\lambda_{\text {, is }}$ not an eigenvalue of the operator U_{2}.

Let λ_{1}, be an eigenvalue of U_{2}, then there is an element $x \neq 0$ such that

$$
U_{2} x=\lambda, x .
$$

From (2.2.17)
(2.2.19) $U_{1} x-\lambda_{1} P_{\lambda,} x=\lambda_{1} x$.

Applying P_{λ} to both sides of the equation and using (2.2.12)
we have

$$
\lambda_{1} P_{\lambda_{1}} x=P{ }_{\lambda_{1}} U x-\lambda_{1} P_{\lambda_{1}} x=U P_{\lambda_{1}} x-\lambda_{1} P_{\lambda_{1}} x=0
$$

Therefore substituting in equation (2.2.19)

$$
\sigma_{1} x=\lambda_{1} x .
$$

Thus we have an element x in H_{λ}, where

$$
x=P_{\lambda}, x=0 .
$$

But this contradicts the fact that $x \neq 0$. Hence λ is not an eigenvalue of the operator U_{2}.

Now we show that every non-zero eigenvalue of the operator U_{2} is an eigenvalue of U_{1}.

Letx $\neq 0$ be an eigenvalue of U_{2} and let X be a non-zero element such that $U_{2} x=\lambda x$.

Then by (2.2.18)
(2.2.20) $\quad{ }_{1} \widetilde{P}, x=\lambda x$.

Applying $\widetilde{P_{/}}$we have

$$
\widetilde{P}, U_{i} \widetilde{P},=\lambda \widetilde{P}, x .
$$

Also

$$
\tilde{P}_{1} U_{1} \tilde{P}_{1}=\tilde{U P}_{1} x^{2}=U_{1} \tilde{P}_{1} x=\lambda x . \quad \text { Therefore }
$$

implies $\quad \begin{gathered}\quad \begin{array}{rl}\tilde{P}_{1} \\ \tilde{P}_{1} & x\end{array}=\lambda x\end{gathered}$
Using (2.2.19) this gives

$$
\mathrm{U}, \mathrm{x}=\lambda \mathrm{x} .
$$

$\gamma_{\text {is }}$ therefore an eigenvalue of U.
Now let X be an eigenvector of U, corresponding to the eigenvalue $\lambda_{\text {and }} H \lambda,{ }_{H} \lambda$ be orthogonal for $\neq \lambda_{2}$

- By Lemma (1.1.7), $P \lambda, x=0$.

Therefore

$$
U_{2} x=U, x-\lambda P \lambda_{1} x=U_{1} x=\lambda x .
$$

Hence X is an eigenvalue of U_{2}.
Let us assume that U_{2} is not identically zero. Then we
can construct an operator such that

$$
U_{3}=U_{2}-\lambda_{2} P_{2}
$$

We continue in this manner and get operators $U_{1}, U_{2} \ldots, U_{n}$ which are completely continuous and self-adjoint. These operators have eigenvalues $\left.\lambda_{l}, \lambda_{\imath}\right) \cdots \lambda_{n}$. They are defined such that
(2.2.21) $U_{k+F} \bar{F} U_{k}-\lambda_{k} P_{\lambda_{k}}=U-\sum_{k} \lambda_{j}^{\prime} P_{z_{j}^{\prime}}$ for $K=1,2, \ldots, n-1$
and

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{a}\right|
$$

Further
(2.2.22) $\left\|U_{K}\right\|=\left|\lambda_{K}\right| \quad$ for $K=1,2, \ldots, n-1$.

We have already shown that these λ_{K} will be different eigenvalues of $U_{l}=U_{\text {. }}$.

Let $U_{n}=0$ for all n. Then by using (2.2.21) we have

$$
U=-\sum_{\partial=1}^{n-1} z_{y} P_{x_{y}}^{\prime} \cdot
$$

If $U_{n} \neq 0$ for any $n=1,2, \ldots$, we get a sequence of operators $U_{1}, U_{2} \ldots$ and their eigenvalues $\lambda_{1}, \lambda_{2} \rho \ldots$ In this case we show that λ_{n} converges to zero. Suppose λ_{n} does not converge to zero, then

$$
\left|\lambda_{n}\right| \geqslant \lambda_{0}>0 \quad \text { for all } n=1,2, \ldots
$$

Let x_{n} in $H_{x_{n}}$ be such that $\left\|x_{n}\right\|=\%$ The elements
x_{n} are orthogonal to each other. Using (2.2.22)

$$
\begin{aligned}
\left\|U x_{m}-U x_{n}\right\|^{2} & =\left\|\lambda_{n} x_{m}-\lambda_{n} x_{n}\right\|^{2}=\left(\lambda_{n} x_{m}-\lambda_{n} x_{n}, \lambda_{m} x_{m}-\lambda_{n} x_{n}\right) \\
& =\left|\lambda_{m}\right|^{2}\left\|x_{m}\right\|^{2}+0+0+\left\|\lambda_{n}\right\|^{2}\left\|x_{n}\right\|^{2} \\
& =2 \lambda_{0}^{2}>0 \quad \text { for } m n .
\end{aligned}
$$

Hence the subsequence $\left\{U x_{n}\right\}$ is not convergent and no subsequence is convergent. But this contradicts the fact that U is completely continuous. Since $\left\|U_{n}\right\|=/ \lambda_{n} /$ for all n.

$$
U_{n} \xrightarrow[n \rightarrow \infty]{ } 0
$$

Hence using (2.2.21) we get

$$
U=\sum_{k=1}^{\infty} \lambda P_{\lambda_{k}}
$$

Therefore (2.2.15) is established.
Now we show that U has no non-zero eigenvalues apart from $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \ldots$.

Let λ be a non-zero eigenvalue such that $\lambda \neq \lambda, \lambda, \lambda_{2}, \ldots$. Then using the already established (2.2.15) we have

$$
\lambda x=\sum_{K} \lambda_{k} P_{\lambda_{k}} x_{\bullet}
$$

The elements $P_{\lambda_{k}}$ in $H_{\lambda_{k}}$ are orthogonal to each other. Therefore, the following holds:

$$
\lambda P_{\lambda_{m}} x=\lambda_{m} B_{m} x \quad \text { for } m=1,2, \ldots
$$

Since $\lambda=\lambda_{m}$ by lemma (1.1.7)

$$
P_{\lambda_{m}} x=0
$$

which implies $x=0$. This contradicts the assumption that $x \neq 0$. Hence there are no non-zero eigenvalues of U apart from $\lambda_{1}, \lambda_{2}, \ldots$ We have shown that the set of eigenvalues of a completely continuous operator U is not more than countable.

THE SPECTRUM OF SELF-ADJOINT OPERATORS

3.1 Operator Polynomials:

Definition 3.1.1: Let U be a self-adjoint operator in the Hilbert Space H and let the bounds of U be defined by $m=\inf _{\|x\|=1}(U X, X)$ and $M=\sup _{\|x\|=1}(U X, X)$.

Let
$\left((3.1 .2) Q(t)=c_{0}+c_{1} t+\ldots+c_{n} t^{n}\right.$ for all scalars C and define (3.1.3) $e(U)=c_{o} I+c_{1} U+\ldots+c_{n} U^{n}$.
$\mathscr{C}(U)$ is called the operator polynomial.
Lemma 3.1.4: Operator polynominals satisfy the following conditions:
i) If $\mathscr{C}(t)$ is a real polynomial, then $C(U)$ is a selfadjoint operator.
ii) If $\ell(t)=\alpha\left(e_{1}(t)+B \ell_{2}(t)\right.$, then
$\mathscr{U}(U)=\alpha Q_{1}(U)+B U_{2}(U)$.
iii) If $\mathscr{C}^{(t)}=\mathscr{C}_{1}(t) \ell_{1}(t)$, then

$$
l(u)=e_{1}(U) e_{2}(U)
$$

iv) If $U V=V U$, then $\mathscr{Q}(U) V=V \mathscr{Q}(U)$.

Proof: i) Let $Q(t)$ be a real polynomial then consider

$$
Q(U)=C_{0} I+C, U \quad \ldots C_{n} t C^{n}
$$

Each operator I, U, ..., U U^{n} is self-adjoint.
$\mathcal{Q}(U)$ is self-adjoint for C_{0}, \ldots, C_{n} real numbers.
ii) Let $\varphi(t)=\tau e_{1}(t)+B C e_{2}(t)$.

Using (3.1.2) we have

$$
e(t)=\varphi\left(c_{0}+c_{1} t+\ldots+c_{n} t^{n}\right)+B\left(s_{0}+s_{1} t+\ldots+s_{n} t\right)
$$

for scalars C and S.
Then by (3.1.3)

$$
\begin{aligned}
U(U)= & \alpha\left(C_{0} I+C,(U)+\ldots+C_{n} U^{n}\right. \\
& 1+B\left(S_{0} I+S_{1}(U)+\ldots+S_{n}\left(U^{n}\right)\right. \\
= & \alpha\left(e_{1}(U)+B \varphi_{2}(U) .\right.
\end{aligned}
$$

iii) $\operatorname{Let} \varphi(t)=\varphi_{1}(t) \varphi_{2}(t)$, then

$$
\begin{array}{r}
l(t)=\left(c_{0}+c_{1} t+\ldots+c_{n} t^{n}\right) \cdot\left(S_{0}+S_{1} t+\ldots t s_{n} t^{n}\right) \\
\text { for scalars } c \text { and } S_{.}
\end{array}
$$

Then by (3.1 .3)

$$
\begin{aligned}
U(U) & =\left(c_{\Delta} I+c_{\imath}(U)+\ldots+c_{n} U^{n}\right)\left(S_{0} I+S_{1} U+\ldots+S_{n} U\right) \\
& =e_{1}(U) \varphi_{2}(U) .
\end{aligned}
$$

iv) Let $U V=V U$. Then

$$
\begin{aligned}
\varphi(U) V & =\left(C_{0} I+C_{1} U+\ldots+C_{n} U^{n}\right) V \\
& =C_{0} I(V)+C, U V+\ldots+C_{n} U^{n} V \\
& =C_{0} V I+C_{1} V U+\ldots+C_{n} V U^{n} \\
& =V\left(C_{0} I+C_{1} U+\ldots+C_{n} U^{n}\right) \\
& =V e(U) .
\end{aligned}
$$

Lemma 3.1.5: We have
(3.1.6) $\left\|\int e(u)\right\| \sum_{t \in\left[\max _{1}, m\right)} / \varphi(t)$.

Proof: Let $\theta^{t \in[m, m]}(t)=/ L e(t) /^{2}$
Since l(U) is a self-adjoint operator
(3.1.7)

$$
\begin{aligned}
\|\varphi(U)\|^{2} & =\sup _{\|(l)=1}(\varphi(U) x, \varphi(U) x) \\
& =\sup _{\| x i=1}(\bar{C}(U) \varphi(U) x, x)
\end{aligned}
$$

But $\theta \quad(t) \leq_{t \in}^{m}$
which implies

$$
\begin{aligned}
& =\sup _{h_{y}} \\
& \left.\left(t^{t}\right)\right|^{2} \mid
\end{aligned}
$$

$\theta(U) \leq r^{2} I$ for $F^{2}=\max \{\theta(t))^{2}$.
Therefore substituting in (3.1.7)

$$
\|U(U)\|^{2} \sup _{\|x\|=1}(\theta(U) x, x) \leq r^{2}
$$

Section 3.2: The Spectrum and Regular Values of a Self-

Adjoint Operator

Definition 3.1.7: A number dis a point of the spectrum of self-adjoint operator U if there exists a sequence $\left(X_{n}\right)$ such that
(3.2.2) $\quad U x_{n}-\lambda x_{n} \xrightarrow[n \rightarrow \infty]{ } 0,\left\|x_{n}\right\|=1$

$$
\text { for } n=1,2 \text {, }
$$

We can use as another synonymous definition, λ is a point of the spectrum if
(3.2.3) $\quad \inf _{\|\times\|=1} \| X-\lambda \times 10$.

The set of all such points is called the spectrum of U denoted by $S u$.

By the definition of eigenvalue, every eigenvalue of U is an element in the spectrum, but the spectrum may contain points other than the eigenvalues of 0 .

Lemma 3.2.4: The bounds of U are points of itsspectrum.
Proof: Let $0 \leq m \leq M$ and let $\lambda=M$. We have $/ / U /=\lambda$ and for $\|x\|=1$

$$
\begin{aligned}
\|U X-\lambda x\|^{2} & =(U X-\lambda x, U x-\lambda x)=\|U X\|^{2}-2 \lambda(U x, X)+\lambda^{2} \\
& =2 \lambda^{2}-2 \lambda(U x, x) \leq 2 \lambda[\lambda-(U x, x)] .
\end{aligned}
$$

By (3.2.3) λ is in the spectrum of U.
Lemma 3.2.5: The spectrum of an operator U is a closed set.

Proof: Let λ, be such that λ_{1} is not in S_{4}. Then $d=\inf \left\|U X-\lambda_{1} x\right\|>0$.
Let $\left|x-x_{1}\right|<d / 2$. Then

$$
\begin{aligned}
& \inf \|U x-\lambda x\| \geq \inf / / U x-\lambda x \| \\
= & \sup \|=1
\end{aligned}\|\lambda x-\lambda x\|>d-\frac{d}{2}=\frac{d}{2}>0 .
$$

Hence $\lambda \& S_{u}$ -
Lemma 3.2.6: Let $Q(t)$ be a real polynomial. Then the spectrum of the operator $\mathscr{C}(U)$ contains all points μ of the form $\mu=川(\lambda)$ for λ in $S{ }^{\prime}$.

Proof: Let μ be a real number and consider the equation

$$
Q(t)=\mu
$$

with $t_{1}, t_{2}, \ldots, t_{s}$ as all the roots of this equation.

Hence, $\mathscr{L}(U)$ - μI can be expressed in the following manner:
(3.2.7) $\mathscr{C}(U)-\mu I=C\left(U-t_{1} I\right)\left(U-t_{2} I\right) \ldots\left(U-t^{I}\right)$.

Let λ be in $S u$. Then there is a sequence $\left[x_{a}\right\}$ of elements such that

$$
\begin{aligned}
& \|x\|=1 \text { and } \\
& U x_{n}-\lambda x_{n} \rightarrow 0 .
\end{aligned}
$$

Put $t_{S}=\lambda$, and $\mu=Q(\lambda)$ in (3.2.7). Then,

$$
\varphi(U) x_{n}-\mu x_{n}=C \quad\left(U-t_{1} I\right)\left(U-t_{2} I\right) \ldots\left(U X_{n}-\lambda x_{n}\right) \xrightarrow[n \rightarrow \infty]{ } .
$$

Therefore μ is a point in the spectrum of $\mathbb{C}(U)$.
Now, we assume that none of the t_{K} belong to $S U$, then

$$
\delta_{s}=\inf _{\|x\|=1}\left\|U x-t_{s} x\right\|>0
$$

Let $/ \mid x \|=1$ and $\|y\| \geq \delta_{s}$. Then

$$
\begin{aligned}
\left\|U X-t_{s} x\right\|=s_{s} & \text { Then }\left(U-t_{s-1} I\right)\left(U x-t_{s} x\right): /\|x\|=1 \\
& \simeq\left\{S U_{y}-t_{s-1} y: l y \| \geq s_{s}\right\} .
\end{aligned}
$$

Hence inf $\left(U-t_{s} I\right)\left(U X-t_{s} X\right) \geq \inf _{\|y\| g_{s}}\left(U-t_{s} I\right)=S_{s-1}>0$. We continue in this manner and we see that:

$$
s_{1}=\inf _{\|y\|=1}\|e(U) x-U x\|=0
$$

Therefore $\mu=e\left(t_{K}\right)$ for $k=1,2, \ldots, S$ are not in the spectrum of $\ell(U)$.

Lemma 3.2.8: Let $\varphi(t)$ be a polynomial then

$$
\|e(u)\|=\max _{t \in S_{u}} 1 e(t) \mid
$$

Proof: Since U is self-adjoint, we have

$$
\begin{aligned}
& \text { (3.2.9) }\|ル(U)\|^{2}=\sup _{\| y(t)=1}(\omega(U) x, \varrho(U) x) \\
& =\sup _{l / 4 l=1}(E(U) U(U) x, x) \\
& =\sup (\Psi(U) x, x \text { where } \\
& \|x\|=1
\end{aligned}
$$

25

$$
\psi(t)=|\varphi(t)|^{2}
$$

(U) .
Hence $\| / Q(U)^{2} / /$. is an upper bound of the operator $\psi(U)$.
The upper bound of a positive operator $\Psi(U)$ is the same as the least upper bound of $S \Psi(U)$
(3.2.10) $M \Psi(U)=\sup S \Psi(U)$.

Applying Lemma 3.2 .6 we have
(3.2.11) $\sup S \Psi(U)=\sup _{t \in S \mu} \Psi(S U)=\left[\sup _{t \varepsilon S_{\mu}} / \kappa e(t) \mid\right]^{2}$. sup

Using equations (3.2.9), (3.2.10), and (3.2.11) we get

$$
\|\varphi(U)\|^{2}=\sup (\Psi(U) x, x)=\sup S \Psi(U)
$$

$$
=\left[\sup _{t \in S u}|e(t)|\right]^{2}
$$

Therefore since $S \mu^{i s}$ closed, sup is attained. Hence,

$$
\|\varphi(U)\|=\sup _{t \varepsilon^{S} u}|\varphi(t)|=\max _{t \in S_{u}} / \varphi(t) / .
$$

Theorem 3.2.12: Let $\varphi(t)$ be a continuous function in $[\mathrm{m}, \mathrm{M}]$.

Then,

$$
\|\varphi(U)\|=\max _{t \in S C}|\varphi(t)|
$$

Proof: Consider a sequence $\left\{\varphi_{k}(t)\right\} o f$ polynomials.
Let $\left\{\varphi_{n}(t)\right\}$ be uniformly convergent to $\varphi(t)$. Then using (3.2.8) we get

$$
\varphi_{\lambda}(U)=\max _{t \in S_{u}}(\varphi(t) /
$$

Taking the limit of both sides as $n \rightarrow \infty$
we have

$$
\|\varphi(U)\|=\max _{t \varepsilon S_{u}} \mid \varphi(t) / .
$$

Definition 3.2.13: A complex number λ is a regular value of U if it does not belong to the spectrum of U.

Theorem 3.2.14: If λ is a regular value of the operator U , then there exist in the Hilbert Space H the inverse bounded linear operator R defined by
(3.2.15) $R_{\lambda}=[U-\lambda I]^{-1}$.

Also if such an operator R as defined in equation (3.2.15) exists then λ is a regular value.

Proof: We show that if λ in a regular value then R_{λ} exists. Let λ be a regular value and define a function S_{λ} on S_{u} as follows
(3.2.16) $s_{\lambda}(t) \frac{1}{t-\lambda}$.

Let $R_{\lambda}=S_{\lambda}$ (U).
From (3.2.16) we have
$(t-\lambda) s_{\lambda}(t)=1$ for $t \mathcal{E} s_{u}$.
$(U-\lambda I) s_{\lambda}(U)=(U-\lambda I) \quad R_{\lambda}=R_{\lambda}(U-\lambda I)=I$.
Therefore,

$$
R=[U-\lambda I]^{-1} .
$$

We now show that if the inverse bounded linear operator R exists, then λ is a regular value.

Let inverse operator $R_{\lambda}=[U-\lambda I]$ exists. Let $\|x\|=1$. Then

$$
R_{\lambda}(U-\lambda I) x\|=\| x \|=1
$$

Therefore, since R_{λ} is a bounded linear operator,

$$
1=\left\|R_{\lambda}(U-\lambda I) x\right\| \leq\left\|R_{\lambda}\right\|\left\|U_{\lambda}-\lambda \times\right\|
$$

Hence,

$$
\inf _{\|\times\|=1}\|U X-\lambda x\| \geq \frac{1}{\left\|^{\mathrm{R}} \lambda\right\|}>0
$$

$$
0
$$

Hence $\lambda \notin S_{u}$. Therefore λ is a regular value of U.
Theorem 3.2.17: Let $\varphi\left({ }^{(}\right)$be a continuous real function
defined on $S U$. Then the spectrum of the operator $C(U)$
contains all points μ of the form
$\mu=\pi(\lambda)$ for λ in S_{u}.
Proof: Let μ be a point outside the spectrum
Let Ψ be a continuous function defined by

$$
\Psi(t)=\frac{1}{\varphi}(t)-\mu{ }^{\text {for }} \quad t \text { in } S u \cdot
$$

We have $\Psi(U)$ defined by

$$
\Psi(U)=[\varphi(U)-\mu I]^{-1}
$$

Using Theorem (3.2.6) we have μ is a regular value for

$$
\varphi(U), i . e \cdot \mu \$ S \subset(u) \cdot
$$

$$
\text { Let } \mu=\varphi(\lambda) \text { for } \lambda \text { in } s_{\mu}
$$

Consider a sequence $\left\{e_{n}(t)\right\}$ of polynomials which is uniformly convergent on $S u$ to the function $C(t)$. Then

$$
\begin{aligned}
\|\varphi(U) x-U(x)\|= & \| \varphi \varphi_{n}(U) x-\varphi_{n}(\lambda) x+\varphi(U) x-\varphi_{n}(U) x \\
& +\varphi_{n}(\lambda) x-U(x) \| . \\
& \leq\left\|(U) x-\varphi_{n}(\lambda) x\right\|+\left\|\varphi(U) x-\varphi_{n}(U) \quad(x)\right\| \\
& +\left\|\varphi_{n}(\lambda) x-\mu(x)\right\| \\
& \leq\left\|\varphi(U) x-\varphi_{n}(\lambda) x\right\|+\| \varphi_{0}(U)-\varphi_{n}(U(x)\| \| x \| \\
& +\left\|\mu-\varphi_{n}(\lambda)\right\| x \| .
\end{aligned}
$$

Applying Lemma (3.2.6) we get
$\inf \left\|\ell_{n}(U) x-\varphi(\lambda) x\right\|=0$.

Hence,

$\inf _{\|x\| v)} \|\left(U\left(x-\mu x\|\leq\| C\left(U-\varphi_{n}(U) \|+\mu-\varphi_{n}(\lambda)\right.\right.\right.$.
Taking the limit as $\mathrm{n} \rightarrow \infty$ we have,
$\inf _{\|x\|=1}\|(U) x-\mu x\|=0$.
Therefore μ belongs to the spectrum of U.

BIBLIOGRAPHY

Friedman, Avner. Foundation of Modern Analysis, New York: Holt, Rinehart and Winston, Inc., 1970.

Kantorovich, Leonid V. Functional Analysis in Normed Spaces, New York: The MacMillan Company, 1964.

Taylor, Angus E. Introduction to Functional Analysis, New York: John Wiley \& Sons, Inc., 1967.

