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CHAPTER I

ELEMENTARY THEORY OF COMPACT OPERATORS

1.1 Basic Topological Concepts:

Before presenting special topics concerning spectral
theory in Hilbert Spaces, we shall introduce several pre=~
liminary definitions and lemmas which shall be referred
to throughout the thesis,

Definition 1.1.1: The finite set M is called an £~

net for the set E if there exists for every point x in E
a point F in M such that (x,F )<E. If £-net exists for

E, then E is called totally bounded.,

Lemma 1,1.2: A normed linear space X is a metric

space with the metric defined by

O (x,y)= fx=y/|

Lemma 1,1.3: A sequentially compact subset of a metric

space is totally bounded.

Lemma 1.1.4: If Y is a compact set of a metric space X,

then Y is separable,
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Theorem 1.1.5: A necessary and sufficient condition
for a subset E of a Metric space X to be compact is that
for each >0, there exists in X a finite £-net for E,.
The condition is also sufficient if X is a complete space.

Theorem 1.,1.6: For any two elements in a Hilbert Space

H,
//x»ry//z + x-y//L: 2 //x//zf 2/ yll 2;
Lemma 1.,1.7: Let x be in a Hilbert Space X and let P
be a projection operator., If xULH, ,then Px=0.
1.2 Completely Continuous Operators

Definition 1.2.1: A continuous operator U mapping a

normed linear space X into a normed linear space Y is called
completely continuous if it transforms every bounded set in
X into a compact set in Y.

Theorem 1.2.2: If U is a completely continuous operator

mapping the normed linear space X into the normed linear
space Y, then Z the range of U is separable,
Proof: Let S be the set UCK) in the space Y, where
K represents the sphere in X with center at O and with radius r.
Hence
S, = {y U (x): xekf,
Since

ne n-/

X
B=U(X)= U (ng )= & ¢ Uy >"—‘,}_§: Sa
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But S,is compact by compactness of U, Therefore S, has
an ¢-net F, . Let D=UF,. Then D is countable and dense.
Hence S, is separable, Therefore &= ,{27, 5,18 separable.

Theorem 1,2,3: Let U==U,+ BU, be a linear combination
of completely continuous operators. Then U is completely
continuous.

Proof: Let E be a bounded set. Let {y.3 < U (E).
Then,

Yo ==(U,(x,) +BU, (x,), where x,£E
for n =1,25e0ee

Since U  and U, are completely continuous, we can choose
from the sequences [U p (x,L)Y , iUi(x~)7 convergent subse-
quences {v, (X"j) s U l(x.\a‘z) respectively. .Hen.ce the

sequence (U, (x, )}is convergent. This implies that U (E)

is compact. Henfe U is completely continuous.

Let U and V be linear operators from X into Y and Y
into Z, respectively, Let one of these operators be completely
continuous then VU is also completely continuous.

Proof: Let U be completely continuous and V continuous.
Let E be bounded, Let x, be in E,n =1,2,3....

Since U is completely continuous, we choose from the

sequence { U (x,)} a convergent subsequence U (X4

Let

U. (X,Lt)»—-ﬁ J,» for y,£Y.



Then

VUXn =V (UX’LK_).

K
Since V is continuous
vV (Ux, ) =V (y,).

Hence V (U(E) is sequentially compact. Thus V U is completely
continuous.

Let V be completely continuous. Let E be a bounded
set. Since, U is a bounded linear operator, E is transformed
into a bounded set by U, i.e., U (E) is bounded. Since V is
completely continuwous, VU(E) is compact. Hence VU is completely

continuous,

Theorem 1.2.4: Let jUhjbe a sequence of bounded linear

operators from a complete space X into a space Y such that
U,—>U (in the space of operators [X—>Y]). If the U,,(n=1,2,...)
are completely continuous, then U is also completely continuous.
Proof: Let S represent the unit sphere of the space X,
It is only necessary to show that U (S) is compact.
Since U, is convergent, for ‘“sthere exists n,~osuch
that
(1.2.4) [IU,~0) £ €/2.

Let y —=Ux where x¢S. Let ynf;Uqg(. Then using (1.2.4) we have
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(1.2.5)  Ny=Y. ) = [/ U(x)=U, () //

< JU-U,,[/ 4 xlf

< €/2

Since U, is compact, U, (S) is compact., But then
there exists an ¢/2-net E;:'f iy § Bggass Do) of
Uy, (8). Hence there exists B, £ F, such that
(1.2.6) U3, =z, 0 & /2,
But
| vz il £ My=yugif + N Sz, LE/2 +¢/2 =

by (1.2.5) and (1.2.6).
Thus F,is an #-net for U(S). Therefore U(S) is compact by

€
theorem (1.2.5) Hence U is completely continuous.



CHAPTER II

BASIC CONCEPTS OF SELF-ADJOINT OPERATORS

2.1 Adjoint Operators:
Definition 2,1.1: Let X, Y be Hilbert Spaces., Let
U be a bounded linear operator from X into Y and let y be
in Y. Define
x/ (x)= (Ux,y).

x‘is clearly a linear functional.
Moreover,

[x"(x))= ] (vxy) | 4oxy [/l £ /[0 Iyl 0 xl.,
Hence

1<y < vl flyy
Thus x / is bounded and x’ &£ X. By Riesz~Frechet Theorem there
exists a unique z in X such that /x’/ = / z/ and x(x)=(x,2)
for all x in X, Let U%bé a mapping from Y into X defined by
U%y:z

Thus

(2.1.2) (Ux,y):(x,UﬁSr) for all x€X, y&€Y,.
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U*-is called the adjoint of U,
Theorem 2,1,3: The adjoint operator U?&mapping4 Y
into X is a linear operator and
I o™l =ful
Proof: (a) By (2.1.2)
(Ux, 3 + ) = (x‘UAK‘(y,Hr,,Z )
But also
(Ux, 5+ 5, ) =(Ux,y )+(Ux,y,)
:(x)U—}Ly,.) —P(X)U*YJ)
= (x, Uy, # 05,
Hence
(x, U*(y, +3) = (x)U*y' + Ty,
Therefore
(x,U*(y, +¥,5) )-(x,U*yﬁLU Uy,)=0
This implies
(x By, +3,) - (05,40, )=0  for a11
xeX,
Therefore

J

* Yotk \—
Uy, +y, )=(Uy+T,y,)=0



Consequently)
U*(y' ¥ )= U’S, ‘HI%LL
(b) We know
( Uxeey )= (x, TGy ).
Also

(Ux,qy) =¢(Ux,y )25 (x, Ty )
:'(xftU’$y).
Hence
(x, (ey) )= (X,ocU*y).
This implies
U*(ou;z): o(U’* .
Therefore U*eis a linear operator,
We now show that (U= / ull.
Putting X =U* y in (2,1.2) , we get

(v¥y, UXy )< (UU*y)y )

Hence
o) = /(UU’S'; v/
< fuukll iyl
< yult v*sl fyy .
Therefore
vkl <ol Nyl
Thus

REEXLTE
(¢) Putting y = Ux in (2.1.2) we get

(Ux,Ux) (x,070x)



or
lox j *= [(x v X/ £fxdl {] VUx/)
S e I AT /A
Hence
Huxll ¢ yxt v/
This implies
Ioit < /vl

Thus
Iv® =11 .

Definition 2,1.4: Denote the second adjoint of U by
U'%*and define it in the same manner as the adjoint U¥with
¥ x>y,

Theorem 2.1.5: U™*:- U,

Proof: (Ufy x) (y,U"%).

Also

(v Ux) = (Tx,y) = (x,0¥y) = (U7, %).
Therefore

(y,0x) (y,0"x) for all x eX, y €Y,
Hence

y= v ¥¥,

2,2 Eigenvalues

Definition 2.2.1: An eigenvalue of an operator U is a
number A such that there exist an element ng O with the property
(2.2.2) Ux,=2 x, ,
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An element x for which (2.2.2) holds is termed an

eigenvector corresponding to the given eigenvalue X,

The eigenvectors corresponding to a given eigenvalue
A form a space called the eigenspace H,.
Lemma 2.,2,3: If U is self~-adjoint then’.
(Ux Yﬁ—éEU(x)y )y 2ty )=(U(x-y) x=y) ]
FU(x+Ly), x+&y)=(U(x=C3) %=L y) ]

Proof: Peocur ;s 7e ‘vial,

Theorem 2,2.,4: If U is a self-adjoint operator, then
Jlul = sup_/(ux, )/ .
Proof: Let Q=sup /(x x)/ where //x//=Z. Then
oz, =) £ ffoxl| (/=10 = o=l £ Jiwil ilxy/= /)]
Therefore
(2.2.5) @=sup | (ux)x)/ 2 //U/] .
We first observe that if U is self-adjoint
then
(2.2.6) (Ux,x) =(x Ux) = (Ux,x )= (Ux, x) is real.
From lemma 2.2.3
(Ux,y) = ,L[(U(xfy] x+y) = (U(x=-y), x-y)]
+ ¢ [Uxive) x438) ~(Wxmyl),x-y0) .
Considering (2.2.6)/
Re (Ux,y) Z_—(U(XH) X+y) - @I(x-y) X-Y)J
Z i Q [(x+y) x+y) - (x-y}x-y)j

— Lq Q[//xw//?‘w" Il 2=y 12_]
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=4 Q Cellxu®r2 i yy2)
=i Lixu*#nyu®] .

Let /(xltz) and y= Ux///Ux//j
Then

[vx)f = Re (Uxyy) 2 LQ [ima*+ it yu*)
= Lol /U__z_xfb
z I+ //(UX//ZJ
=4 QL +1]9
Therefore
(2.2.7) JIvlZ Q.
Hence
Il U/ = Q.

Theorem 2.2.3: The eigenvalues of the operator U are

real,

Proof: Let A be an eigenvalue. Then there exists X,F#0

such that

Ux,=A%X, » Let x=-x,/ /%4, . Then

IXI/=1 and Ux~ A x. But then
(2.2.9) ( Ux,x) z (?cxl x) < (7~x/ x):)(x}x)
=Ny L=k .

Since U is a self-adjoint ( Ux,x) is real and hence 2is real.



12
Theorem 2,2,10: Let H2 and Hﬁzbe eigensubspaces
1
corresponding to different eigenvalues)gand 24~of the
operator U, Then H%’ is orthogonal to H)a:
Proof: ILet x be in Hy and y in Hy o Then
S Y] 2
Ux = 2,x and Uy = A,y.
Therefore if A ,#% O then
Afx, )= (2 x)y)= (Tx3)=(x,Ty)
— (XI R{y) = _j-z(x)y)
Thus
This implies (xly):o) since 7H;5;[2,/%?,aaaznﬁz_
Horo
Therefore H,, 6 and Hy, are orthogonal.,

Theorem 2.2.,11: A completely continuous self-adjoint

operator U has at least one eigenvalue.
Proof: If U0 then =0 is obviously the eigenvalue
because

Uxo:)‘xo, for any XO#O.
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Let UZ O and define

m=in f (Ux,x) and M=sup (Ux x).

rxi=t 2 ==’

Then by Theorem 2.2.4

) ull = Sup /(Ux/x)/.
But if /m/ <M, then MZm>0 and
[ (vxx) [ = (Ux)x) £ L M3,

Therefore sup /(Ux x)[= M
JXU=1 l

Also, if /m[>M implies McO.
Then sup /[(Ux x)/=(n
x| [ 4

Hence
vl = max Lfml,u3.
Define
2 _ m if AUl =/m|
=

M if ull = M,

We show that Ais an eigenvalue of the operator U.

Let //UJ/=M. Then from the definition of M there
exists a sequence {x{ with {(x,/-Isuch that
(2.2.12) (Ux,,x,)—M=],
We can extract from the sequence EUX,.,K a convergent
subsequence since U is completely continuous and [x, }is
bounded.

Let {Ux,] denote this subsequence which converges

to Iy e Then



1
IOx,max, P AR 22, (Txx,) + 2,

£ Hunl- 22(Txx,) T R v’ 2704 2%

= o,
Hence
an M{'L T‘_—:z Oo
Therefore

% Clh=(Ux, =3x, >4y -0]

— &yﬁ since U is bounded.
Let %, = Y, /ne Hence x,— X,
!

Since U is a continuous operator

Ux,—> Ux,.
Therefore

Ux,= J,A%, -
Since [[x, =1 Xﬁé O.

Therefore, A ,is an eigenvalue.
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Definition 2.2,13: Let M be a closed linear subspace
of a Hilbert Space. Then every x in H can be written
uniquely in the form x=y+z, where y in M, z in Mt,

Point y is called the "Projection" of x in M, and the

operator P given by Px=y is called the "projection" on M.
Let P]t be the projection on the eigensubspace HA 3

Theorem 2.,2.,14: Let U be a completely continuous self-
adjoint operator, then the set of eigenvalues of U is not
more than countable and

(2.2.15) UZ£2P5 where 2,,2._; ... are
~ e different eigenvalues
of U and convergence is
in operator norm.

Let A be an eigenvalue of U,
Then
(2.2.16) X P,=T P?d: P;,“ U/

since for P./\x in H, and any x in H/

A
UP.A_x = )ka
and UP) ZA P/1 is self-adjoint, and hence P, and U are

permutable.,

Let
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(2.2,17) U,= U;-2p, where U,=U. Using (2.2.16) and

letting = I-Pl ’I being the identity operator then,
!

~

(2.2.18) U,=P0,=U,p ,

hence U,\ is also self-adjoint., By Theorem 1.2.3 U—Z is

also completely continuous and with (2.2.18) we have

Nudl < 4%, v, < 84 4w, < [lvl .
Theorem 2.2.11 applied to U, gives us its numerically
greatest eigenvalue, call it A 2°

‘Since [, =0  and /2,05 ][],
/21/ 2 /2,1./

It remains to show that X,is not an eigenvalue of the
operator sz
Let A ) be an eigenvalue of U,, then there is an element

x:{fo such that

U,x = A,X.
From (2.2.17)
(2.2019) U,X" -}lpﬂ,x :RIX.
Applying P) to both sides of the equation and using (2.2.12)
we have

AP, x= % -

'lex—Pz’ Ux=- R‘P)_l X = UP?-'X -R'PRJ‘X"O.

Therefore substituting in equation (2.2.19)

U'X:AIX.
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Thus we have an element x in H5 , where
K= F *, X=0.

But this contradicts the fact that x40. Hence /‘;'is not an
eigenvalue of the operator U,.

Now we show that every non-zero eigenvalue of the
operator Uzis an eigenvalue of U ;e

Letx40 be an eigenvalue of U, and let X be a non-zero
element such that U,x=Ax.,
Then by (2.2.18)
(2.2.20) U,(iv’, X ZAX.
Applying (f’/, we have

w ou -
P, UP, = \P,x.

Also
A L ~ A ~
B U, B= URx =U P xZXkx. Therefore
1(%, X=)X
implies P X=X,

Using (2.2.19) this gives

U, x FAx,
tis therefore an eigenvalue of U .

Now let X be an eigenvector of U' ,corresponding to the
eigenvalue *and H)) Hy be orthogonal for ¥ X o
. By Lemma (1,1.7), P, x=0,

Therefore

UZX:U,x-'l,P)\‘x:U,x::Zx.
Hence X is an eigenvalue of U,.

Let us assume that U zis not identically zero. Then we

can construct an operator such that Uy= UQ~2;P)3
2
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We continue in this manner and get operators UpsUgeeesl
which are completely continuous and self-adjoint. These
operators have eigenvalues 2 ,2,eee7),+ They are defined
such that
(2.2.21) Ty, 7 U,=2P, = U= 2% Ry,

for Ko1,2,+.en~1
and
lz 2z eeezinad

Further
(2.2.22) HUpll= [ Xl for K <1,2,4e03n=1,
We have already shown that these ',l,cwill be different
eigenvalues of U=T,

Let U, <0 for all n. Then by using (2.2.21) we have

~
U-‘g%?\é o

If U,L:# O for any n=1,2,..., we get a sequence of
operators U, , U, ... and their eigenvalues Ziupeee In
this case we show that Xx,converges to zero. Suppose A, does
not converge to zero, then

N = Qs > 0  for all n =1,2,40.

Let x, in Hy, be such that Il x, =4 The elements

re
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X are orthogonal to each other. Using (2.2.22)

WO =0%n 1" Rer =P Xl 2 (3, X, = o, PonZon-2.2)
=2l Ntk *F 0+ O £ 2. //x&//

=2 R >0 for m n.
o
Hence the subsequence {Ux,}is not convergent and no sub-

sequence is convergent., But this contradicts the fact that U
is completely continuous. Since [U,[[= /)h/ for all n.
U, 5= 0.
Hence using (2.2.21) we get
U=Z1P,,.
Therefore (2.2.15) is established.
Now we show that U has no non-zero eigenvalues apart
from 2, R S
Let A be a non-zero eigenvalue such that?t:,l'R,bﬁ appes o
Then using the already established (2.2.15) we have
AX= é MPpXe
The elements P,ch in H, are orthogonal to each other.
Therefore, the following holds:
) P)mx =28, X for m=1,2,...
Since A=7,by lemma (1.1.7)
P,‘Mx:O
which implies x-0., This contradicts the assumption that xf0.
Hence there are no non-zero eigenvalues of U apart from 2,3,...
We have shown that the set of eigenvalues of a completely

continuous operator U is not more than countable.



CHAPTER III

THE SPECTRUM OF SELF-ADJOINT OPERATORS

3.1 Operator Polynomials:

Definition 3.1.1: Let U be a self-adjoint operator

in the Hilbert Space H and let the bounds of U be defined by
m=inf (U X,X) and M=zsup (U x,X).

M lf=t k(=]
Let
((3.1.2) Q)=C+Ct+ oot G .t = for all scalars ¢
and define
(30103) L‘Q,(U):COI+C' U+ .ooo 4" chn .

(@ (U) is called the operator polynomisl.

Lemma 3.1.4: Operator polynominals satisfy the following

conditions:
i) If (<) is a real polynomial, then L(U) is a self-
adjoint operator.
i1) If @(+4) =xe (&) +BL(t), then
(2 (W= o @ V+B (2, (0).
i31) If Lg,(%) = @) L (f), then

20
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(2(v) = @ ,(uv) W,(v)
iv) If UV=VU, then (Q(U) V=V (Z(U).

Proof: i) Let@(+) be a real polynomial then consider

(Q(U):CO I‘}"C 'U oo Ci\u’t
n
Each operator I, U, ..., U is self-adjoint,

2(U) is self-adjoint for C,, ..., C, real numbers.
ii) Let L¥4) =xQ & }B 2 (£).

Using (3.1.2) we have
Q) =Q(Co + Tt et Cut T ) + B (S, + 8,4 4200 +5:2)
for scalars C and S.

Then by (3.1.3)
W T) =« (Cp,IfC, (U)+ ...%—C,\Un
4B (S, T 45, (D) .. fs, (0)
=q( L, (V) + B Q,(U).
111) Let@(+) = (¥) “&(¢), then

W E) =(Co+C |t h eaatCut™) (S,48, ¢+ veut 5, ¢7)
for scalars C and S,

Then by (3.1.3)
WQ(U)=(C, I ¥C, (VW +.ee+ C,UY) (S,I t5, Utu.. 15, v)
=@, () & (U).
iv) Let UV=VU, Then
@U) V=(C,HI +C U .. +#C, UMV
Col (V) + C,UV 4eee +C UV

A
C,V I 4C VU 4-vu. +C, VU
'V (C,I +C U +.ue +C,T0%)

—

———
—

_

—

= VW (U).
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Lemma 3.1,5: We have
(3.1.6) //c@(u)/limfax@/cuf) .
Prooz: Let 0 ()= /w(#) /™
SinceY(U) is a self-adjoint operator
(3.1.7) [lQ(U)l[ zsup (Q(U) x ,QU) x)

ey
= sup (e (U)@(U) x, x)
Zsup (& (U) %, x).
Iyggisy

But © (9 ﬁmaxL&(f-) |+
which implies
o (U) <r T for rz'm [@(¥)]
- Epa iy
Therefore substituting in (3.1.7)
I Uxw) Iisup (o (U)x, x)er?

el
Section 3.2: The Spectrum and Reg;ular Values of a Self-

Adjoint Operator
Definition 3,1.7: A numberris a point of the spectrum

of self-adjoint operator U if there exists a sequence

(X,) such that
(3.2.2) Ux, - Q kao, Jx oIl =1

for n =1,2,400

We can use as another synonymous definition, A is a point of
the spectrum if
(3.2.3) %\?i”UY ~ [0,
The set of all such points is called the spectrum of U

denoted by S we
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By the definition of eigenvalue, every eigenvalue of U
is an element in the spectrum, but the spectrum may contain
points other than the eigenvalues of U,
Lemma 3,2.,4: The bounds of U are points of s/%sspectrum,
Proof: Let O<¢m < M and let2=M, We have /U/-and for
(1x)) =1 .
HOX-2X[[ = (UX-2 K, UX-AK)JWY =22 (U, X)# 2
m2d2A (ux ,x)e2x (A-(Ux ,x)] .
This gives us //i;}’f} Jfo x —-Xx[/??_ A LA - 5;1/?:/ (Ux ,X)T,
=2 2™ - M)=0.
By (3.2.3)A1is in the spectrum of U.
Lemma 3,2,5: The spectrum of an operator U is a closed
set,

Proof: Let ), be such that A,is not in S Then

b{ [ ]
d =inf || UX -2,x// > O.
Let [% =X/ 2 d/2. Then
inf /U x—x /| 2inf [/ Ux -2 xl
[ =
— sup //X,X-'/\X/bd -d=-d>0,
R &
Hence A ¢S, .

Lemma 3.2,6: Let(@(4) be a real polynomial. Then the

spectrum of the operator @(U) contains all points M of the
form 1 =W (A) for Ain S ue

Proof: Let Il be a real number and consider the equation

W (€)=

with f’]fjl...,és as all the roots of this equation.
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Hence, (J(U) - UI can be expressed in the following
manner:
(3.2.7) @(U) =TI =C (U =-+%4,I) (U=¢,1I) ... (0 =-¢,I).
Let Abe in S+ Then there is a sequence (x, jof
elements such that
[ x]{=1 and
U¥, ~ Ax,—> 0.
Put t.=7 and A = Q) in (3.3.7). Then,
WU) x,- WX =C (U =&, 1) (U= 2, I) eoe (UX-2%,) =20
Therefore JI is a point in the spectrum of W (U).
Now, we assume that none of the £, belong to S L then
851inf v x =¢sxlf = O.
Let/x(/<1 and [y =8, « Then
IUX =¢,X/ =8 . Then (U - ¢ I) (Ux= £X)./&)y=1
C 5 sy -ty Aulz 5}

Hence inf (U - ¢.I UTXe € X)2inf (U - I)=8 - 0.
( s ) ( s ),//9”34( tq ) -

-1
We continue in this manner and we see that:

§ = inf [U) x - U x//=0.
=1
Therefore AL = LQ(%K) for K = 1,256e.5 S are not in the
spectrum of Z(U).
Lemma 3,2.8: Let @ (¢) be a polynomial then
= le(e)! .
QY| égl%z @ (¢)
Proof: Since U is self-adjoint, we have
(3.2.9) ()= sup (@ (W) x,20) x)
=sup (@ (U) (V) x, x)
Uetist

= sup ( ¥ (U) x, x where
[l
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2
Y (&) = [e(e)]
(o) .
3.
Hence /ﬂ((U) /[, is an upper bound of the operator.ﬁV(U).
The upper bound of a positive operator 4 (U) is the
same as the least upper bound of S YW (U)
(3.2.10) MYy(U) = sup S ¥(U).
Applying Lemma 3.,2.6 we have
2
(3.2.11) sup Sy(U)= sup Y (SU)= Usup /ce,(t)ﬂ.
'é'égu ‘t&gc(
sup () .
Using equations (3.2.9), (3.2.10), and (3.2.11) we get
2
[[ @AV)[| =sup (¥ (U) %, x)=sup S ¥ (V)
2
- 85U (é,(é‘) Y
[éers)%/ 11
Therefore since SAL;S closed, sup is attained, Hence,
(U)) = sup /@ (¢)] = max/WW(¢)/.
Jlecu)) 2/ / pex/
Theorem 3,2,12: Let (¢(¢) be a continuous function in
[y w].
Then,
J B = max [@(€)] .
teS«
Proof: Consider a sequence '{ézk(t)§bf polynomials,
Let {:%Zk({ﬁg be uniformly convergent to Q(+). Then using
(3.2.8) we get
Q0= pax (o)
Taking the limit of both sides as n—> o

we have

| @(V) | =max [&© /.
teS

€ou
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Definition 3.2.12: A complex number}Lis a regular}value
of U if it does not belong to the spectrum of U,
Theorem 3,2,14: If R is a regular value of the operator

U, then there exist in the Hilbert Space H the inverse
bounded linear operator R defined by
(3.2.15) Ry =[U-2117,
Also if such an operator R as defined in equation (3.2.15)
exists then X is a regular value.

Proof: We show that if X in a regular value then R
exists. Let X be a regular value and define a function
Sy, on S, as follows
(3.2.16) 5, (& 1

iy
Let R7~::S7‘ (u).
From (3.2.16) we have
(£=72) 85 (€)= 1 for t g S
(U-A1) 8, (0= (U-2I) Ry= Ry (U -0)= 1.
Therefore,
rR= LU -;113“{

We now show that if the inverse bounded linear operator
R exists, then 2 is a regular value,

Let inverse operator R%ffiﬁ - I] exists,
Let //X//= 1. Then

Ry (U =2I) x[=lxu=1.

Therefore, since R, is a bounded linear operator,

A
1=/ Ry (U =2I)x/ £ WR N HTUy- 2%/
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Hence,

inf [JUX-AL( = __1 . 0.
Ixii= T ~°

Hence Z#Su_. Therefore A is a regular value of U,

Theorem 3.2.17: Let W (¥) be a continuous real function
defined on Sy . Then the spectrum of the operator ¢(U)
contains all points yof the form

m = A) for xin 5, .

Proof: Let/ll be a point outside the spectrum .
Let | be a continuous function defined by
y(4) = 1 for <+in S, .
2 () =f< “

We have W(U) defined by
w(U) = Cw(T) -ﬂIT[.
Using Theorem (3.2.6) we have A_is a regular value for
L&(U),L.e.,aés@&).
Let Bl = W () for 2 in S e
Consider a sequence {CQ,\({—) g of polynomials which is
uniformly convergent on S, to the function W (¢). Then
l«v) x -0 (x)) = @) x =¢,(0) x HKU) x -¢(U) x
+@ L) x -T (x)/] .
260) x = @(X) x|+ //@(U) x =1, (V) (x)/
FlUELr) x =@ ()]
ZJ0) x =GR x40 =0 [/
H =@, O =1
Applying Lemma (3.2.6) we get
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inf /[ (g (V) x - @(R) x/[[= 0.

Hence,

jar J(0x =pxiz [/ QU - @O/ + R=-E(X) .
Taking the limit as n —>« we have,

i H - =
}/’?/11;1 () x - fIx //=0.

Therefore /Il belongs to the spectrum of U,
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