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CHAPTER I

ELEMENTARY THEORY OF COMPACT OPERATORS

1.1 Basic Topological Concepts;

Before presenting special topics concerning spectral

theory in Hilbert Spaces, we shall introduce several pre¬

liminary definitions and lemmas which shall be referred

to throu^out the thesis.

Definition 1,1,1; The finite set M is called an €-

net for the set E if there exists for every point x in E

a point F in M such that (x,F )^-6* If fi-net exists for

E, then E is called totally bounded.

Lemma 1,1,£; A normed linear space X is a metric

space with the metric defined by

P (x,y)= yj'x-y//
Lemma 1,1,5: A sequentially compact subset of a metric

space is totally bounded.

Lemma 1.1,4: If Y is a compact set of a metric space X,

then Y is separable.
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Theorem A necessary and sufficient condition

for a subset E of a Metric space X to be compact is that

for each 5?'0, there exists in X a finite fi-net for E,

The condition is also sufficient, if X is a complete space.

Theorem 1.1.6; For any two elements in a Hilbert Space

H,

//xty//^ i II x-y//^' 2 //x//^/- 2 //y/Z -

Lemma 1.1.7: Let x be in a Hilbert Space X and let P

be a projection operator. If x_LHg,,then Px-0.I.2 Completely Continuous Operators

Definition 1.2.1 : A continuous operator IF mapping a

normed linear space X into a normed linear space Y is called

completely continuous if it transforms every bounded set in

X into a compact set in Y,

Theorem 1.2.2; If U is a completely continuous operator

mapping the normed linear space X into the normed linear

space Y, then ^ the range of U is separable.

Proof: Let S be the set UCl^ in the space Y, where
K represents the sphere in X with center at 0 and with radius r.

Hence

X rr ( / jAT ' ■'
_ —

(X);^ U (lyKjr ^ ( ^(K^) )- (7 '

Since
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But S^is compact by compactness of U, Therefore S^has
an Tf-net • Let D- t/F^. Then D is countable and dense.

Hence is separable. Therefore 1^ l[z^±b separable.

Theorem 1.2.5: Let U-^Ut^BU^^be a linear combination
of completely continuous operators. Then U is completely

continuous.

Proof; Let E be a bounded set. Let fy^^ ^ U (E).
Then,

yn.^^CU , (x^) f BU^ (x^), where x^£E
for n ,2,....

Since H
^ and U^are completely continuous, we can choose

from the sequences fu , (x^)? , lu^^Cx,,)] convergent subse¬
quences (u, , U ^(x^^ J respectively. Hence the
sequence [u , (x^'O^is convergent. This implies that U (E)

it

is compact. Hence U is completely continuous.

Let U and V be linear operators from X into Y and Y

into 2, respectively. Let one of these operators be completely

continuous then VU is also completely continuous.

Proof; Let U be completely continuous and V continuous.

Let E be bounded. Let x^ be in E,n =1,2,3....
Since U is completely continuous, we choose from the

sequence ^ U (x^)"^ a convergent subsequence U (x>^^
Let

U (x^j^) ^ y^ , for y^£ Y.
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Then

= V

Since V 1b contlnuoue

V (Ux,^) -^V (y„).
Hence V (U(E) is sequentially compact. Hius V tJ is completely

continuous.

Let V be completely continuous. Let E be a bounded

set. Since, U is a bounded linear operator, E is transformed

into a bounded set by U, i.e,, U (E) is bounded. Since V is

completely continuous, VU(E) is compact. Hence VU is completely

continuous.

Theorem 1,2,4: Let ^U^jbe a sequence of bounded linear

operators from a complete space X into a space Y such that

(in the space of operators Qi—^YJ), If the U^,(nr1 ,2,.,,)

are completely continuous, then U is also completely continuous.

Proof; Let S represent the unit sphere of the space X,

It is only necessary to show that TJ (S) is compact.

Since is convergent, for-t$?othere exists n^;=’<i3such

that

Let y=rUx where x£S, Let yn^rU^^K , Then using (1.2.4) we have
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(1.2.5) //U(x)-II«^(x)//
i: //^-U.o// // 3C//

t^/2

Since is compact, U^^(S) is compact. But then
there exists an ^/2-net ( z, f z z of
U ha (S). Hence there exists such that

(1.2.6) -^/z.
But

l{ 7-7^0 K L-e/Z-^t^Z-^
by (1.2.5) and (1.2.6).

Thus :^is an -net for U(S), Therefore U(S) is compact by
theorem (1.2,5') Hence U is completely continuous.



CHAPTER II

BASIC CONCEPTS OF SELF-ADJOINT OPERATORS

2,1 Ad,1Pint Operators:

Definition 2,1,1t Let X, T be Hilbert Spaces, Let

U be a bounded linear operator from X into Y and let y be

in I. Define

X ' (x)- (Ux,y).

x‘*is clearly a linear functional.

Moreover,

/x'(x)/=r / (Dx y) I //y//i Ihll //y// 7/x//.
Hence

//x'// ^ //U// //y/Z

Thus Xis bounded and x^€ X, By Riesz-Frechet Theorem there

exists a unique z in X such that Hy.'l[ - // z// and x^(x)3(x,z)
for all X in X, Let TJ be a mapping from Y into X defined by

U y:r z

Thus

(2,1,2) (Ux,y)-(x,U^) for all x£X, y£Y,

6
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U Is called the adjoint of U*

Theorem 2«1«3; The adjoint operator TJ mapping* Y

into X is a linear operator and

// D*// -m

Proof; (a) By (2,1.2)

(Ux^y, 4-) — (x,U^y,^y^ )
But also

(Ux^ y, + y^^) — (Ux;x )t(Ux, y^)
- (x^U^y, ) 4-(x^u'^T^)
= (x^u^y,

Hence

(x^ TJ^(y^ +- ) ) - (x^ ),
Therefore

(x,U^(Xf-yJ )-.(x^U^y^7'U U y^ 0
This implies

(x fy^) - (U'V. +'U^y^ )-0 for all

Therefore^

u1y,+y^ )-(U^y^-fU^y_^)-0

xeX,
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Consequently^
U^Cy^t-y^
(b) We know

( Ux^^^y ) - (x^U'^'=ty) ).
Also

(Ux^i^ry) :r-^(UXjy )'^(xjTJ^y )
r (x^-?dU^y)*

Hence

(x^H^Ccj^y) ) - (x^ot^U^'^y),
This implies

Therefore is a linear operator.

We now show that // 'rf?/' // U //.
Putting X-U^ y in (2,1,2) , we get

U^y )' (UTJ^y^y )
Hence

II U^//^ —/(TJU^y^ y)/
£ Ijv U^y// // y//
£ //U// //U^y// Z/y//,

Therefore

1/U%// £//u// //y/1.
Thus

I/O*// = llvil .

(c) Putting y — Ux in (2,1,2) we get

(Ux^Ux) (xjU%x)
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or

IllJx/l^- /(x U%X )/-^//x// // U^x//
f //x/( //U^// //Ux//.

Hence

i/Ux// //X f //U//
This implies

//U// £//U^//.
Thus

u//.

Definition 2,1 »4: Denote the second ad .joint of IJ by

U ^^and define it in the same manner as the adjoint U^with
u^'^;x—^Y.

Theorem 2»1,3: U'^r U,
Proof: (U'^y^x) (y^lj^).

Also

(y jUx) ~ (Ux^y)- (x jUV)- (U^^x).
Therefore

(y,Ux) (y^TT^^x) for all x ^X, y €.Y.
Hence

Urr u'^^.
2,2 Eigenvalues

Definition 2.2>1: An eigenvalue of an operator U is a

number pL such that there exist an element 0 with the property

(2.2.2) Ux^=r;i Xq ^
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An element x for which (2.2*2) holds is termed an

eigenvector corresponding to the given eigenvalue X,

The eigenvectors corresponding to a given eigenvalue

X form a space called the eigenspace H^*
Lemma 2.2,3: If U is self-ad.ioint then,

(Ux ^ y)--^[TllCx^y )j xV-y )-(U(x-y) ^ x-y)J
-^[icuCxf/y)^ xy-iy)-(TJ(x- o y) ,x- 4 y)^

Proof t PiLoof- is>'re.!^

Theorem 2,2*4: If U is a self-adjoint operator, then

/) vii = (ux^ x)/.
Proof: Let Q:=sup x)j where //x//:i.2. Then

I (Ux^ x)/ - //X5x/I (I xfl ^ z^Ux// Jr //U // //x//— // U// ,
Therefore

(2.2.5) Q'sup /(Ux^x)/^ //U//.
We first observe that if P is self-adjoint

then

(2.2.6) (Ux^x) =-(x jUx) — (Ux^xJ-^^^^ (UXj x) is real.
From lemma 2.2.3

(Ux^y)^ -^pU(x-^y)^ x-^y) - (TJ(x-y)^ x-y)I7
C [u(xfy4) jX-fy4) -(U(x-yO;X-yX) .

Considering (2.2.6)y
Re (TJx, y)-^ O^Cxfy^ xf-y) - (]J(x-y)j x-y)J

£ Q pxiy)^ x-^) - (x-y^x-y)^
— Q //x-y//^_I/



11

Q r2/(x//V2//
- I/Zxz'^/'/ZyZ/^J .

Let //'x/z'jr/ and y" Ux

Then

^Ux/z' ^ Ee (Uxjy) ^ £7zx/)V U

' i«r / f /JQ
Therefore

(2.2.7) // U // ^ Q.
Hence

// U// Q.

Theorem 2.2.8; The eigenvalues of the operator U are

real.

Proof: Let /I be an eigenvalue. Then there exists x^^O
such that

Ux^^>Xo . Let x;rx^//x/4 . Then

yx//^ / and Ux'^Tl x. But then
(2.2.9) ( Ux^x) ^ C^cx j x)^ (^x^ x)-/<x^x)

r-7«!x;z^->-
Since U is a self-adjoint ( Ux^x) is real and hence^is real.
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Theorem 2,2,10; Let and H., be eisensubsnaces
A, Aji

corresponding to different eigenvalues ^^and of the

operator U, Then is orthogonal to

Proof: Let x be in and y in , Then
A /

Ux - >,x and Uy :r ^^y.
Therefore if ^^^0 then

A/x^y)^ ( >^x^y)=- (Ux^ y)= (x^lJy)
- (x^?.^y)- A,^(Xjy)
— TijCx^y),

Thus

(x^y)=rO,
This implies (^c^y).
~buyy\^ ,

Therefore and H^^are orthogonal.

Theorem 2,2,11i A completely continuous self-adjoint

operator U has at least one eigenvalue.

Proof: If U^O then;^-0 is obviously the eigenvalue

because

Ux^"/\x^ for any



13

Let 0 and define

m-;=in f (Ux.x) and M::rsup (Ux x).

Then by Theorem 2,2,4

)l Jjil = Sup / (Ux^x)/.
But if / m/ j then Msm^O and
/ (Ux jx) /(UXjX) <£ On yMj ,
Therefore sup / (Ux ,x) /= M ,

l(x/(^l I

Also, if / m / ;^ M implies /M<iO,

Then sup Ii'UXjX) l^frofi
Hence

IjUll — max /Tfm/jMD,
Define

if M =/m/
if ||U(/ - M,

We show that ^ is an eigenvalue of the operator U,

Let //u//-M, Then from the definition of M there
exists a sequence with //xj/'isuch that

(2,2,12) (Ux^,x^) ^K-7.
We can extract from the sequence fUx^^ a convergent
subsequence since U is completely continuous and /x^]is
bounded,

Let [Ux^^ denote this subsequence which converges

to y^. Then



^k

//Ux^//’^- 2/7, (Ux^jX,^) f-A*^
//u//-^- 2A,(Ux,^^)t II u//^- 27f--h/l^
0 ,

Hence

Ux»,-Ax^ -> 0.

Therefore

-°3

-

y„^ since U Is bounded.
Let Hence

Since H is a continuous operator

Ux., Ux,.

Therefore

Since lixji ^ l j 0.
Therefore,is an eigenvalue.
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Definition 2,25: Let M be a closed linear subspace

of a Hilbert Space. Then every x in H can be written

uniquely in the form xczy^-z, where y in M, z in ,

Point y is called the *'Pro.iection*' of x in M, and the

operator P given by Px=y is called the "projection" on M.

Let P^ be the projection on the eigensubspace ,

Theorem 2.2.1^; Let TJ be a completely continuous self-

adjoint operator, then the set of eigenvalues of U is not

more than countable and

(2.2.15) U jr ... are
different eigenvalues
of U and convergence is
in operator norm.

Let yi be an eigenvalue of U.

Then

(2.2.16)

since for P-^x in and any x in

UP^x >P^x
- 7- P^ is self-adjoint, and hence P^ and U are

permutable.

and TJI^

Let
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(2.2.17) Uj- where U,^U. Using (2.2.16) and

letting ^ 'the identity operator then,

(2.2.18) U_^ = HJ, =^U,? ^

hence U^is also self-adjoint. By Theorem 1.2.3
also completely continuous and with (2.2.18) we have

(l^jill £ 0, n,// ^ 11%!/ (( u,// ^ //u// .

Theorem 2.2.11 applied to U_^ gives us its numerically

greatest eigenvalue, call it

Since I7il=l(0,ll and //Uj,///
/;i,/ 2

It remains to show that ^,is not an eigenvalue of the

operator U^.
Let be an eigenvalue of U^, then there is an element

x^O such that
U X ~^,x.

From (2.2.17)

(2.2.19) UjX-X =;i^x.
Applying to both sides of the equation and using (2.2.12)
we have

X,P^^x-P^jUx-
Therefore substituting in equation (2.2.19)

UjX-7i,,x.
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Thus we have an element x in H , where

K -=-0 ,

But this contradicts the fact that x^O, Hence ^is not an

eigenvalue of the operator

Now we show that every non-zero eigenvalue of the

operator U^is an eigenvalue of U^,
Lety^ he an eigenvalue of and let X be a non-zero

element such that U^x-^x.

Then by (2,2,18)

(2,2,20) x^^x.
Applying Pf we have

P, U,P, ^P , X,

Also

^ U, P/« UPj XVU j P ^ X :^>.x, There fore
x='^x

implies p"^XrX,
Using (2,2,19) this gives

U f X -/lx,
7-is therefore an eigenvalue of U ,

Now let X be an eigenvector of U ^ corresponding to the
eigenvalue T^and H be orthogonal for Ic =f

, By Lemma (1,1,7), P^jX=0,
Therefore

u^ u^X-x^, X :^;;ix.
Hence ^ is an eigenvalue of

Let us assume that U 2_is not identically zero. Then we
can construct an operator such that U^r
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We continue in this manner and get operators

which are completely continuous and self-adjoint. These

operators have eigenvalues ^ They are defined

such that

(a.2.21 ) f V, =
for ,2,,,.n-1

and

Further

(2.2.22) H'O^.fl-for K ^-1 ,2,...,n-l.

We have already shown that these %^will be different

eigenvalues of U/-TJ.

Let U,^~0 for all n. Then by using (2.2.21) we have

U' .

If TJ^4 0 for any n^,2,,.., we get a sequence of

operators U j , ... and their eigenvalues ••• In

this case we show that >^converges to zero. Suppose^^does

not converge to zero, then

llj > 0 for all n '1 ,2,...
Let x^in be such that //Xy^lf-/. The elements
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x^axe orthogonal to each other. Using (2.2,22)

- a t-o-I-1:tj Vx',//^-
for m n,

Hence the subsequence ‘[Ux^'^ls not convergent and no sub¬

sequence is convergent. But this contradicts the fact that U

is completely continuous. Since //'U^lj- /).^l for all n.

Hence using (2,2,21) we get

Therefore (2,2,15) is established.

Now we show that U has no non-zero eigenvalues apart

from /I I j ^ ,, ,

Let "X be a non-zero eigenvalue such that/l ,, ,

Then using the already established (2,2.15) we have

/lx=

The elements Pj^x in H^^^are orthogonal to each other.
Therefore, the following holds:

> Pj^^x for m-1 ,2,...
Since X-Xo^by lemma (1,1.7)

which implies x-0. This contradicts the assumption that x/0.
Hence there are no non-zero eigenvalues of U apart from2,,A^,.,
We have shown that the set of eigenvalues of a completely

continuous operator U is not more than countable.



CHAPTER III

THE SPECTRUM OF SELF-ADJOINT OPERATORS

3.1 Operator Polynomials:

Definition 5.1.1: Let U be a self-adjoint operator

in the Hilbert Space H and let the bounds of U be defined by

in=inf (UX,y.) and M-sup (Uj<,X).
imt-i

Let

((5.1.2) - Cg -j- ...'j" for all scalars C

and define

(3.1.3) '^(u)=c^rfc, U-f ... ^ C^U*^ .

02, (U) is called the operator polynomial.

Lemma 3.1.4: Operator polynominals satisfy the following

conditions:

i) If UL( ^) is a real polynomial, then ^(U) is a self-

adjoint operator,

ii) If C^(-b ) then

(j^(U):r U)fBCeJU).

iii) If mU) ^ CJ2,U) then

20
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mm - (/z,m
iv) If UV^VU, then Ul(T3) V - V (X(U).

Proof; i) Let(^(-f) be a real polynomial then consider

((2.(u)-c^ I^ c , u ...
n,

Each operator I, U, U is self-adjoint.

C^(U) is self-adjoint for , ...» Cereal numbers,

ii)Let6e(-t)--r^/-<f)fB6e.^(-6).
Using (3.1.2) we have

aiSt) 4- c,tf... f- c^t'’ ) 4- B (s^ -f s,-6 -i-...'hs^^)
for scalars C and S,

Then by (3.1.3)

US^) ^ ^ (u)-i- ...-v-c^u"’
1 fB (S^I-Z-S., (U) f- ...f S^(u5
-^( (U) 4- B <^a^CU).iii)LetC£(^) ^le(:-^r) ^^-6) t then

V^f)'(Co+-C .ni-f ...-hC^t^) iS^-hS,t f ...4- S^Te"")
for scalars C and S.

Then by (3.1.3)

(je,(U)-(C^ I 4-0/ (U}4-...-^ C^U'') (S^ I tS, U-/-... U)
-l^,(U)U.^(U).iv)Let TJV^VU. Then

(^(U) V ' (C ^I 4-C lU 1-... 4-C^U^)V
- Cq I (V) -t C , UV -P... K ^U^ V
^ CpV I -fC,VU-H... 'f'C^VU'*
- V (C^I fc ,U -H ... fC^u")
^ V (JL(U).
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Lemma 5«1.5; We have

(3.1*6) //'6C(U)/(lmax /C£,(-6) .
jj

Proof: Let 0 {f) - (Oii h) /.
Since l^U) is a self-adjoint operator
(3.1.7) //(^(TJ)|/^sup ((j^(TJ) x.^U) x)

-

sup (<^(u)0^(u) X, x)
WyiT^l

^sup (0 (U) X, x).
But 0 (6) £.max

which implies

©■ (U) ^r ^ for ir rmaxf^( •^) i .

Therefore substituting in (3.1.7)

l( l^XV) H r^sup (9- (U ) X, x)
H Ll-^i

Section 3.2: The Spectrum and Regular Values of a Self-

Adjoint Operator

Definition 3.1.7: A numberAis a point of the spectrum

of self-adjoint operator TJ if there exists a sequence

(X^) such that
(3.2.2) //x^//^1

for n jr-1 |2,...

We can use as another synonymous definition, A. is a point Of

the spectrum if

(3.2.3) inf/|U
HlU]

The set of all such points is called the spectrum of U

It*denoted by S
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By the definition of eigenvalue, every eigenvalue of TJ

is an element in the spectrum, but the spectrum may contain

points other than the eigenvalues of U,

Lemma 5»2«4: The bounds of TJ are points of spectrum.

Proof: Let 0 <m M and letil-M, We have //I7A;iand for

^
^ a.

/(Ux-Xx// “(UX-X?^, tjx-Xa)'/ua//-2A (TJX ,

r'BA^-aT.CTJx ) ^2'A.(X -(Ux , x )J .

This gives us inf l(U A -Xxf/^2^ T/T - sup (TJ?^ »X)T,
//X//-I ^ /a//-/

^ 2 A(M - MJ::0.
By (3,2,3)X-ls in the spectrum of TJ,

Lemma 3,2,5: The spectrum of an operator TJ is a closed

set.

Proof: Let be such that A, is not in , Then
d ^inf//TJX-/Ij x//> 0.

Let /Jt - X/ ^ d/2, Then
inf //TJ X -Ax II ^ inf// TJX -^xlf
//>/<'"(

— sup //Xx--Ax||>d - ^rrd > 0,* a. -5

Hence ,

Lemma 3,2,6; Let((2.(^) be a real polynomial. Then the

spectrum of the operator 6^TJ) contains all points/I of the
form jH “ti^(A) for Ain S^,

Proof; Let /I be a real number and consider the equation

with • • •» ^5 roots of this equation.
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Hence, ^U) - JUJ. can be expressed in the following
manner:

(3.2.7) U2i'^) - JUI (U - -6, I) (U - I) ... • t ^I).
LetXbe in S. Then there is a sequence [xjjof

elements such that

I x/l-l and

Put , andj[\ = (j^(^) in (3.21.7). Then,
ie.(U) x^-;i^,^-C (H - I) (TI - -t^I) ... (ITJ)(~/lx^);^^.

Therefore JCl is a point in the spectrum of (s2_(TJ).

Now, we assume that none of the belong to S^, then
«--=inf //U )(. -tsKll 0,

Let||x||■^^ and //y//35^ . Then
/fU)( . Then (U - (U > - )/^//^ 1

^ y .

Hence inf (U - -6.1) (TJX- (U - 0.

We continue in this manner and we see that:

& ^ inf //%(U) X - U x//-0.
Therefore y^L-r (l^(-^^) for ic — 1,2,..., S are not in the
spectrum of ^(U).

Lemma 3.2.8: Let ^(t;) be a polynomial then

//(£(H)//- ^m^/^(-6)/ .
Proof: Since U is self-adjoint, we have

(3.2.9) sup ( C^(U) x,<22(TJ) x)
-r sup ( i:£,(U) Ij2.(U) X, x)
HII^I

^ sup ( (U) X, X where
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(U) .

Hence //t^^CU) //, is an upper bound of the operator(U),
The upper bound of a positive operator is the

same as the least upper bound of S 3i^(U)

(3.2.10) My^(U)^ sup S ^(U).

Applying Lemma 3.2.6 we have

(3.2.11) sup S y^(U) - sup ‘i’ (SU)= £sup/<52^(t)//.
sup ( ) .

Using equations (3.2.9), (3.2.10), and (3.2.11) we get

[[ (U) X, x) - sup S if' (U)
r Tsup / c^ie-) (Zl

eSco
Therefore since S^is closed, sup is attained. Hence,
//^(U)//- sup/c^(t^)/ - mg^/^t)/.

Theorem 3.2.12: Let d^tfr) be a continuous function in

[m, mJ .

Then,

l( (A'^)i( ^ max /<^(6r) / .
Proof: Consider a sequence •H2^(t-)^of polynomials.

Let be uniformly convergent to l^('^). Then using

(3.2.8) we get

(«^D) =
Taking the limit of both sides as n.—^ c=^

we have

/^(^) / .

II Ce(U) // -max M’^) / .
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Definition 3.2.15: A complex number^is a regular value

of U if it does not belong to the spectrum of U,

Theorem 5»2,1A; If ^ is a regular value of the operator

U, then there exist in the Hilbert Space H the inverse

bounded linear operator R defined by

(3.2.15) R^^-iTu
Also if such an operator R as defined in equation (3.2,15)
exists then X is a regular value.

Proof; We show that if X in a regular value then R^
exists. Let X 3- regular value and define a function

S^ on S^as follows
(3.2.16) J

Let
^ (U).

From (3.2,16) we have

ii-li) i-t) - 1 for 6^ S^,

(U-XD S^(U)rr (U -;il) R^ ^ R^ (U - XI) - I.
Therefore,

R - Cu - X •

We now show that if the inverse bounded linear operator

R exists, then X is a regular value.

Let inverse operator R^-OJ - ^ 13 exists.
Let // X //m . Then

R^ (U - >1) x//=//x//-l.
Therefore, since R^ is a bounded linear operator,A

\ ^ Jl (U - X I)x// ^ //R^// //U^- Xk//,
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Hence,

inf //UK->i(/f 1 0.
to-i " ir^ii

Hence Therefore is a regular value of U,

Theorem 3.2«17: Let ^ be a continuous real function

defined on S^, Then the spectrum of the operator (j^(U)
contains all points/<.of the form

fA ) for >in .

Proof; Let^ be a point outside the spectrum
Let Ijf/ be a continuous function defined by

s=- 1 for -t-in S^,
(-t) -/x^

We have yr^(U) defined by

SH(U)= Cu^,(u)

Using Theorem (3.2.6) we haveis a regular value for

^-^( U ) , 6,i$.« //L •

Let fl ^ for in S^.
Consider a sequence £c^^(-6-) ^ of polynomials which is
uniformly convergent on S^^to the function ^(i6). Then
//i^U) X - U (x)//^ /f(^(U) X X hC^U) X -€^(U) X

X) X - U (x)// .

^/^U) X - xj/f-mCU) X -(^^(U) (x)//

X) (x)y/
/|^(U) X x//.7^^(U) //xfl

X// .
Applying Lemma (3.2.6) we get
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inf II X - x/A- 0.

Hence,

^in^^ H (U(x “PsiK ^ // (X{T3 - ^^(U)/// /Ei )
Taking the limit as n —>«£? we have,

inf
hll^i

I (U) X - /Ix (l-O.
Therefore belongs to the spectrum of U.
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