
ABSTRACT

COMPUTER SCIENCE

West, Tracey W. B.S. Clark Atlanta University, 1993

M.S. Clark Atlanta University, 1995

PASSWORD BASED SECURITY IN HYPERMEDIA SYSTEMS

Advisor: Dr. David Kerven

Thesis dated May, 1995

This study has been performed to investigate the problem

of lack of security in hypermedia systems. This study was

based on the architectural design of past and existing

hypermedia systems. The Dexter Reference model was used as

the basis for this research. As an extension of the model, a

password-based security mechanism was designed.

The design approach used was to examine various

hypermedia systems comparing and contrasting their

similarities and differences. Issues of security and design

methods were discussed as a way to increase the security in

hypermedia environments.

The results of this research demonstrate that private

information can be stored on hypermedia systems and made only

accessible to authorized users. This refinement of the Dexter

Reference model may have an impact upon the design and

evaluation of current and future hypermedia systems.

CLARK ATLANTA UNIVERSITY

PASSWORD BASED SECURITY IN

HYPERMEDIA SYSTEMS

A THESIS SUBMITTED TO

THE FACULTY OF CLARK ATLANTA UNIVERSITY

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

TRACEY W. WEST

ATLANTA, GEORGIA

MAY 1995

© 1995

TRACEY W. WEST

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to give thanks to God and to my family and

friends for giving me the strength and encouragement to make

it to this day. Thanks to my advisor, Dr. David Kerven, my

committee, Dr. Erika Rogers and Dr. Radhakrishnan Srikanth and

also to Dr. Kenneth Perry.

11

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

LIST OF ILLUSTRATIONS iv

GLOSSARY v

CHAPTER

1. INTRODUCTION 1

1.1 Hypermedia Environment Security Problem . 2

1.2 Research Overview 4

2. BACKGROUND RESEARCH 5

2.1 Reference Models 6

2.2 The Dexter Reference Model 10

2.3 Security Requirements 12

2.4 Security in Operating Systems 13

3. CONCEPTUAL FRAMEWORK AND METHODOLOGY 16

3.1 An Overview of the Storage Layer 17

3.2 An Overview of the Runtime Layer 23

3.3 Testing and Evaluations 29

4. CONCLUSION AND FUTURE WORK 32

4.1 Summary of Research 32

4.2 Future Work 33

APPENDIX 35

A. Trademarks Used 35

B. Prototype Environment 36

REFERENCE LIST 42

ill

LIST OF ILLUSTRATIONS

Figure Page

1. Hypermedia Environment Model Architectures 7

2. Layers of the Dexter model 12

3. Z Notation Specification of a Link 19

4. Z Notation Specification of a Specifier 20

5. Z Notation Specification of an Anchor 20

6. Password Entry Type 21

7. Password File 22

8. Predicate Schema 22

9. Type Consistent Components 23

10. Instantiation of a Component 26

11. Contents of a Session 27

12. Security Implementation 29

IV

GLOSSARY

Augment. One of the oldest operational hypertext systems

originally known as NLS.

Vannevar Bush. The first person who describe the idea of

hypertext.

Hypermedia. A database consisting of different types of
information such as text, graphics, sound, speech,

photographs and video.

Hypertext. Nonlinear organization of information.

Intermedia. A hypermedia system developed at Brown

University.

Interoperability. The ability of a system to incorporate

information objects that were not created in the original

hypermedia environment.

Instantiation. A presentation of the component to the user.

KMS. The Knowledge Management System that is a hypertext

system primarily designed for multi-user problem solving.

Links. Connection between one document and another document.

Memex System. The first hypertext system.

Navigation. The act of using hypertext to move around the
database without getting lost or confused.

Neptune. A multilevel hypertext system developed by Neptune.

Tektronix.

NoteCards. A hypertext system developed for Xerox LISP

workstations.

UNIX. An operating system developed by Bell Laboratories.

Xanadu System. The hypertext system developed by Ted Nelson.

CHAPTER 1

INTRODUCTION

The advancement of computer technology and the rapid

interest in on-line systems have sparked the recent burst of

awareness in hypermedia systems. What is a hypermedia

environment? A hypermedia environment is a collection of

information objects and a set of associations among those

objects. The information objects, nodes, contain data of a

variety of media types: text, audio, video, graphics, and/or

images. The associations, links, serve to connect related

information objects. Together, these two sets are often

referred to as a hyperbase. The final component of a

hypermedia environment is a set of applications which provide

access to the hyperbase.

A node consists of an information object and a

representation of associations between this information object

and other related nodes in the hyperbase (Kerven 1993) , and it

represents the fundamental unit of hypertext (Campbell 1988) .

Hypermedia provides the ability to interactively navigate

among information objects through links. The relationships

between associated objects represented as pointers, are often

referred to as links or Hyperlinks (Martin 1990).

Hypermedia applications have many uses today. Current

systems allow you to find everything from up-to-minute news

and financial data to information about music, literature,

free software packages, pets, medicine, and government issues

(Bowen 1995). Many companies use hypermedia applications for

training purposes: e.g., AT&T's Concept Presentation System

(CPS) (Benimoff 1993), and schools use it for educational

purposes: e.g., the Interactive NOVA hypertext system that

allows students to browse large amounts of biology information

relative to their current assignments in school (Nielsen

1993) . This technology can also be used to provide efficient,

interactive access to data such as The Crompton's Encyclopedia

and Webster's Dictionary (Nielsen 1993) . Some other uses of

hypermedia systems have been for law practices and medical

uses. Hypertext systems developed for commercial and

experimental uses have been applied to a variety of domains:

AUGMENT for computer supported collaborative work; Intermedia

for Educational Hypermedia; and KMS and NoteCards for

information management and organization.

1.1 Hypermedia Environment Security Problem

In current hypermedia systems, lack of security is an

issue that is not often addressed. This lack of security

hinders the user from storing private data on the system.

Hypermedia systems provide the user with access to large

amounts of information available at the click of a mouse.

With all this information easily accessible, some questions

and concerns about protecting certain data arise. Various

hypermedia systems have been designed with little or no

security mechanisms in place, which can be an important aspect

to users who are interested in protecting critical data. For

network based systems, mechanisms to protect private data from

being viewed by the common user must be available.

This research examines several hypermedia environment

models: Dexter, HAM, and an Object-Oriented model, and will

proceed to build upon the most widely accepted one, the Dexter

model. A password based security system model will be

developed as an extension of the Dexter model to address the

lack of security problem. The design approach, is to develop

a security mechanism based on hypertext links used to restrict

access to private information. The nodes associated with

these links will only be accessible to those users with valid

user names and passwords. This research was inspired by the

Dexter model's conspicuous lack of any type of security

mechanism. The developed extended model represents a

refinement of the Dexter model that may have an impact upon

the design and implementation of future hypertext systems as

well as the evaluation of current systems. In the model,

private data is viewable by only authorized users. A

prototype environment has been built to evaluate the model.

The prototype environment was developed in the C programming

language and implemented upon the world wide web environment.

1.2 Research Overview

The remainder of this research is outlined as follows:

Chapter 2 describes the background research, the architecture

of hypermedia systems, and the Dexter Reference model. After

discussing the model, security methods and the issue of

security in operating systems are introduced.

Chapter 3 covers the conceptual framework and results of

the proposed model. The model for security is presented as an

extension of the Dexter Reference model, and is followed by

the results from this research.

Chapter 4 concludes this research and presents future

work for the proposed model. Suggestions regarding future

security developments in hypermedia systems are discussed.

4

CHAPTER 2

BACKGROUND RESEARCH

The hypertext concept was developed in 1945 when Vannevar

Bush suggested the memex system (Bush 1945) . In an article in

the Atlantic Monthly, Bush described a nonlinear system that

would be used for organizing scientific information in order

to facilitate browsing and searching through data that was

connected by links. Other systems built upon Bush's idea:

NLS/AUGMENT along with the Xanadu system (Nelson 1990), were

developed which addressed the problems of accessing,

addressing and organizing large amounts of data. However,

these and other hypertext systems were developed with

restrictions on hyperbase placement and platforms.

Hypertext is a powerful way to retrieve information that

could not be accessed as efficiently through the traditional

database or information retrieval techniques. In (Nielsen

1990), Nielsen stated that:

Hypertext is non-sequential writing: a directed graph, where each node

contains some amount of text or other information. The nodes are

connected by directed links. In most hypertext systems, a node may have

several out-going links, each of which is then associated with some smaller

part of the node called the anchor. When users activate an anchor, they

follow the associated link to its destination node, thus navigating the

hypertext network. Users backtrack by following the links they have used

in navigation in the reverse direction. (Nielsen, 1990, 298).

Hypertext is represented as a collection of components related

through a series of links, containing a source and

destination. The components, as well as the network itself,

are meant to be "visited" through the use of an interactive

browser for an undetermined amount of time, in which the

"visit" is terminated by the end of the application or by

traversing the links to other components.

Hypermedia is one way of combining hypertext and

multimedia together, by having each component of the hypertext

be a self-contained component of the multimedia presentation

(Hardman 1994) .

2.1 Reference Models

As mentioned in chapter 1, a hypermedia environment is a

collection of information objects, a set of associations among

those objects, and a suite of applications to explore the data

network. Several approaches have been used to define the

general architecture for hypermedia environments: the Dexter

model (Halasz 1989), the Neptune/HAM model (Campbell 1988),

and an object-oriented model (Kerven 1993). The following

figure shows an overview of the architectures of these three

hypermedia reference models. In each model, the basic

components of a hypermedia environment are defined but with

different terminologies.

RUNTIME

LAYER

PRESENTATION

SPECIFICATIONS

STORAGE

LAYER

ANCHORING

WITHIN-

COMPONENT

LAYER

PRESENTATION

LAYER

HYPERTEXT

ABSTRACT

MACHINE

(HAM)

LAYER

DATABASE

LAYER

The Dexter Reference model Campbell and Goodman

APPLICATION

TOOLS

ADMINISTRATION

NODE

PRESENTATION

Kerven

NETWORK

LINK RESOLUTION

SECURITY

Figure 1. Hypermedia Environment Model Architectures

The Dexter Reference model (Halasz 1989) was designed as

an attempt to have a model capable of representing the

important abstractions found in a number of existing and

future hypertext systems. The goal of the model is to provide

a principled basis for comparing systems as well as for

developing interchange and interoperability standards (Halasz

1989) . This model came into existence from a series of

workshops on hypertext organized by Jan Walker and John

Legget. Extensions of this model to incorporate temporal

information have been proposed in the Amsterdam model (Hardman

1994). The model consists of three layers: runtime layer,

storage layer and the within-component layer. An overview of

the model is given in section 2.2.

According to (Campbell 1988), the architecture of

hypertext systems can be divided into three levels:

Presentation Level - user interface, Hypertext Abstract

Machine (HAM) Level - nodes and links, and the Database Level

- storage, shared data and network access. No current

hypertext systems follow this model exactly, but are composed

of a mixture of these and other features using different

terminology. In the HAM model, the lowest level of

abstraction, the database level, contains the database of

information, the basic node/link network structure, for the

system. In the Dexter model (Halasz 1989) , the database level

is encompassed by the within-component layer and in (Kerven

1993) by the presentation level as well as a portion of the

8

administrative level. In both (Kerven 1993) and HAM (Campbell

1988), in addition to the node/link structure, other issues

such as security and multi-user access, are considered. In

(Kerven 1993) these areas are addressed in the administration

level. Data security is provided by an Access Control list

mechanism, which is used to describe a set of users and their

access privileges. In the present form of the Dexter model

(Halasz 1989), no security mechanism is included.

The content of a node is specified in the within-

component layer in (Halasz 1989), the database layer in

(Campbell 1988) and the node layer in (Kerven 1993) . In the

Dexter model (Halasz 1989) , anchoring, is a mechanism used for

addressing locations or items within a node or "component".

This mechanism is an interface between the storage layer and

the within-component layer in model.

In order to communicate with the system, user interface

applications (Campbell 1988) are used. This level of

abstraction is referred to as the runtime layer in the Dexter

model (Halasz 1989) and application tools in (Kerven 1993).

At this level, applications such as browsing and editing are

supported in (Kerven 1993).

In addition to the user interface application, the Dexter

model contains an interface between the runtime layer and the

storage layer referred to as presentation specifications

(Halasz 1989) .

Presentation specifications are mechanisms used for encoding

information about a component to be presented to the user.

Generally, hypertext models use different terminologies

but have the same functionality. In each system, the three

basic hypermedia environment components are supported: the

node, the links, and the access applications. These three

components are crucial in the development of any hypermedia

environment.

2.2 The Dexter Reference Model

The Dexter Reference model was designed as an attempt to

capture both past and existing features found in a number of

hypertext systems. The goal of the model is to provide a

principled basis for comparing systems as well as for

developing interchange and interoperability standards (Halasz

1989) .

Often different terminologies are used to refer to the

same information. Since the Dexter model represents a

standard among hypertext systems, common terminology is to be

used. The term "component" is used to refer to a unit of

information to which a link is made. Components are the

fundamental units of hypertext (Campbell 1988) which can

contain graphics, text, animation, audio and/or images.

Composite components are components created from the

combination of other components.

10

The model is divided into three layers: the within-

component layer, the storage layer and the runtime layer. The

within-component layer is concerned with the structure and the

contents stored within each node. This layer makes

distinctions among media types. It is only highlighted in the

model because the Dexter model represents a generic hypermedia

system and this layer can store various data types. The

storage layer, the main concern of the model, describes the

structure of the nodes and links. At this level, components

are generic and no distinction among media types is made. The

runtime layer represents the interface between the user and

the other layers of the model. In the Dexter model,

presentation specifications allow components to be tailored in

a priori manner. This mechanism is an interface between the

runtime and storage layers which allows a component to have

different ways of being presented when following different

nodes to access the same data.

Navigating through links to access data in a hypermedia

environment is possible through the anchoring mechanism. In

the Dexter model, anchoring is used for addressing locations

within a component. This mechanism is an interface between

the storage and within-component layers.

Figure 2 provides a visual mapping of a component in the

three layers of the model. The runtime layer is the user

interface to the system and displays what the user sees while

running the system. The storage layer, which is hidden from

11

the user, contains the node/link information for the system.

The within-component layer shows how the components are

physically stored within the environment.

Runtime Layer

component 11

component 12

component 13

Storage Layer

Text 1

□ □

Text 2

Within-

Component

Layer

Figure 2. Layers of the Dexter model

2.3 Security Requirements

Several general principles have been identified by

(Saltzer 1975) that can be used as a guide for designing a

secure system, and these principles should be considered to

protect against illegal entry:

The security system should be made public but

should not disclose information to the intruder

about how the system works.

Intruders can often gain access to systems through

default measures, so the default on a system should

have restricted access.

12

• To gain access into certain files, permission

should be authorized. A file system should always

have a strategy in place to check current

authorization.

• The least privileges possible should be made for

each process. If a user is not required to write

(w) to a file, the access permission should not be

granted.

• Protection mechanisms should be made in a simple,

uniform way and at the lowest level of the system.

• Security should be done in a way that will not

require much work from the user. It should not be

a time consuming effort that takes away from the

productivity of the user.

2.4 Security in Operating Systems

The most important fundamental of all the system programs

is the operating system (Tanenbaum 1987). An operating system

is a collection of programs that controls the operation of

hardware and software and provides the base upon which the

application programs can be written. The most visible part of

any operating system is the file system (Tanenbaum 1987). In

a file system, protecting information is very important to

users of the system. It is essential for files to be

protected from intruders who might edit, copy, or delete files

from the system.

13

A strong security mechanism should be in place to prevent any

unauthorized accesses.

Security issues can be divided into two different areas:

loss of data and intruders. There are many causes of data

loss which can be handled through proper backup maintenance.

When dealing with the issue of handling unauthorized users, it

can be of two types: passive intruders and active intruders.

A passive intruder does not cause any harm to the system.

Their major concern is to view secure data. An active

intruder is one who wants to cause harm to the system and

whose goal is to destroy or alter files.

Besides dealing with unauthorized access, mechanisms are

required for specifying authorized access. Access privileges

should be implemented in a way that is transparent to the

users. The most widely used form of authentication is

requiring a user to type in a password. A password's physical

characteristics include its size and its makeup (the

alphabets) (Wood 1977). Access to UNIX systems, requires a

user name and a password. Once the two have been entered

correctly, the user gains access to appropriate files. The

UNIX system contains a password file that is used to store

information such as the user name and the encrypted password

for each user on the system. This file can be viewed by

anyone but can only be changed or altered by privileged users

and selected programs.

14

UNIX file security deals with who can access a file and

what privileges they have over that file. Associated with

each file are the categories of owner, group and other. The

mode or permission of a file is in the form of three patterns

of rwx; the file permission determines who can read (r) , write

(w) and execute (x) a file. The first pattern gives the

permission for the owner. The second pattern gives the

permission for the group, and the last pattern is for any

other user.

Files can be encrypted by using the crypt command. The

crypt command uses a key which scrambles the standard input

into an unreadable code which is sent to standard output.

Encrypted files can be decrypted by using the same crypt

command with the appropriate key. File encryption is a method

of hiding information from other users, intruders as well as

the system administrator. With time and patience,

encrypted files can be converted into standard text; however,

this process is a non-trivial task.

15

CHAPTER 3

CONCEPTUAL FRAMEWORK AND METHODOLOGY

In this chapter, the framework of the proposed model is

described. This thesis research extends the Dexter Reference

model to include a password based security model. The

proposed security component will be incorporated into the

Dexter model to guard against passive intruders. The Dexter

model was chosen for this research for several reasons:

• It was designed as a comparative model.

• It was designed for developing interchange and

interoperability standards.

• It was the most widely accepted model.

Some users will have privileges that will not be granted

to other users. The security mechanism will be based on

hypertext links that will restrict access to private

information. The nodes associated with these links will only

be accessible to those users with valid user names and

passwords. The extensions will be placed primarily in the

Dexter model's storage layer. The following section gives a

description of the proposed model. The model has been

evaluated through the design, development, and testing of a

prototype. In the conclusion of this chapter, the results of

designing and testing the developed prototype are given.

16

3.1 An Overview of the Storage Layer

The driving force behind the Dexter model is the storage

layer, which describes the hypertext's structure. The primary

entities in the storage layer are components: atomic,

composite, and links. Components are connected by links.

Composite components are the result of combining other

components. The structure of composite components is in the

form of a direct acyclic graph (DAG). The NLS/AUGMENT system

is one of the few extant hypermedia environment which supports

document compositions; however, these composites are

restricted to hierarchical organizations.

The storage layer supports two functions used to retrieve

components: the accessor and the resolver. A unique

identifier (UID) is associated with each component. If given

a UID, the accessor function maps the UID to the particular

component. Many times components are not addressable in this

manner due to components that have been altered or deleted

over time. In order for these components to be accessed,

component specifications and the resolver function are used.

The resolver function is used to map a component

specification into a UID, which in turn allows the accessor

function to retrieve the component. The resolver is only a

partial function since some component specification may not

lead to existing components. In the case where the UID is the

component specification the resolver function acts as the

identity function.

17

To achieve span-to-span links, the Dexter model uses an

anchor, as an indirect addressing entity. An anchor is

designed with two parts: an anchor id and an anchor value.

The purpose of these two anchor attributes is to serve as the

interface between the storage layer and within-component

layer. The anchor id is the unique identifier that describes

the anchor within its component's scope. The anchor value

represents a spatial location within the context of the

particular component.

A component specification, an anchor id, a direction, and

a presentation specification, is referred to as a specifier.

In the model, the anchor ID along with the component

specification mechanism can be combined to designate the

endpoints of a link. The direction specifies whether the

endpoint is to be considered as source, destination, both or

neither; the model uses codes: FROM, TO, BIDIRECT, and NONE,

respectively.

The Dexter model is formalized using the Z Notation, a

language based on set theory. This formalism is used to

define the necessary abstractions and their uses in the model

and will, therefore, be used to define the model extensions.

The following types described in Z notation are the

classes used to modify the model to include the password

security extension. This formalization is used in both the

storage and runtime layers.

18

The primary entities of the storage layer are a recursive

type BASE_COMPONENT which contains atoms, links composite

components and passwords. The following formally describes

the extended BASE_COMPONENT in the extended model.

BASE_COMPONENT::= atom< <ATOM> >

link<<LINK>>

composite<<seq BASE_COMPONENT>>

password<<seq PASSWORD_ENTRY>>

An atom is modeled as an individual media element of a

hypertext system and defined by the type ATOM.

[ATOM]

Links are defined as mechanisms used to associate

information objects. The following figure shows the link

schema.

=LINK=

specifiers : seq SPECIFIER

specifiers >= 2

Is : ran specifiers • s.direction = TO v BIDIRECT

Figure 3. Z Notation Specification of a Link

A link is a sequence of specifiers, which are identified

as containing a presentation specification, a component

specification, an anchor id and a direction. The following

figure illustrates how a specifier is defined.

19

=specifirr

componentSpec: COMPONENT_SPEC

anchorSpec: ANCHOR_ID

presentSpec: PRESENT_SPEC

direction: DIRECTION

Figure 4. Z Notation Specification of a Specifier

In the storage layer, the specifier identifies a

component specifications which comes from a given set

COMPONENT_SPEC. Anchors are composed of two parts: anchor id

and an anchor value. An anchor id is identified by a unique

id and comes from the given set ANCHOR_ID. Anchor values,

identified as variable fields, comes from the given set

ANCHOR_VALUE. They are formalized in the model as:

f=ANCHOR=

anchor_id : ANCHOR_ID

anchor_val : ANCHOR_VAL

Figure 5. Z Notation Specification of an Anchor

20

The presentation specifications represent the visual display

of a component, and come from the set PRESENT_SPEC.

Direction was introduced to describe the end point of a link

as a source, destination, both or neither. It is described in

the model as the enumeration:

DIRECTIONS FROM | TO | BYDIRECT | NONE

A composite is defined as a recursive sequence of base

components. In addition to the sequence of atoms, links and

composite components, the proposed model includes a

password_entry field. The password field is defined as:

=PASSWORD=

logicaldocumentSpec: DOCUMENT_SPEC

usernameSpec: USER_NAME

passwordSpec: ENCRYPT_PASSWORD

Figure 6. Password Entry Type

In the proposed model, logical document specifications

come from the given set DOCUMENT_SPEC. This is a given set of

documents that can only be accessed by authorized users. User

name specifications are identified as the login names for the

users and come from the given set USER_NAME. Password

specifications are the passwords for the users and come from

a given set ENCRYPT_PASSWORD.

21

A password entry is a sequence of password entries

Figure 7 illustrates the password file.

=PASSWORD ENTRY=

password_entry : seq PASSWORD_ENTRYS

password_entry >= 1

Figure 7. Password File

In the model, predicates are introduced to show whether

a component is an atom, link or composite. The following

shows the predicates for the extended model.

=PREDICATE=

isAtom_ : P COMPONENT

isLink_: P COMPONENT

isComposite_: P COMPONENT

isPassword_: P COMPONENT

Vc : COMPONENT •

isAtom c « base(c) i ran atom

isLink c *♦ base(c) k ran link

isComposite c ** base(c) k ran composite

isPassword c *» base(c) k ran password

Figure 8. Predicate Schema

22

A "type" consistency is defined for components to be

"type consistent" if they are both of the same type. In the

proposed model, the following figure illustrates type

consistency.

=PREDICATE_CONSISTENCY=

typeConsistent: COMPONENT *» COMPONENT

V cl, C2 : COMPONENT •

Cl typeConsistent c2 «

(isAtom cl ~ isAtom c2) v

(isLink cl " isLink c2) v

(isComposite cl " isComposite c2) v

(isPassword cl ~ isPassword c2)

Figure 9. Type Consistent Components

These are the necessary extensions needed to modify the

storage layer in the Dexter model. The following section

gives an overview of the runtime layer and the formal

specifications needed to incorporate the password based

security mechanism into the runtime layer.

3.2 An Overview of the Runtime Layer

The fundamental concept in the runtime layer is the

instantiation of a component, or the presentation of the

component to the user (Halasz 1989). Once a hypertext has

been accessed by the user, a copy of that component is

returned to the user's view. If changes are made, the revised

components may be returned to the storage layer. Each

23

presentation of a component is given a unique instantiation

identifier (IID); this allows multiple simultaneous

instantiations for any component.

The instantiation affects both components and anchors.

In the model, a link marker is a presentation of an anchor.

In order for the link marker to be accessed properly, the

instantiated entities contain a base instantiation, a sequence

of link markers, and a function used to map link markers to

the anchors they instantiate.

In the runtime layer, a session entity tracks mapping

between components and their instantiations. When a user

accesses a hypertext, a session is opened. This allows the

user to edit the component, modify the component (realizing

edits), and destroy the component (unpresenting the

component). The entire presentation of the component is

removed whenever the user deletes a component through one of

its instantiations. The session only remains open until the

user has completed interacting with the hypertext.

The session entity contains: the hypertext that is being

accessed, a mapping from the IID's of current instantiations

to their components in the hypertext, a resolver function, a

history of actions, a realizer function and an instantiation

function. In addition to these entities, the proposed model

will include a user name and password field.

The purpose of the resolvers in the runtime and storage

layers are the same: they attempt to map a specification to

24

a UID. The resolver in the runtime layer can also use

additional information concerning the current session such as

the session history; this type of information is not

accessible to the storage layer resolver function.

One of the most important functions in the runtime layer

is the session's instantiator function. This function's input

consists of a component (UID) and a presentation

specification. In return, the instantiator returns an

instantiation of the component as a part of the current

session. The presentation specification is primitive in the

model; it specifies how the instantiated component is to be

presented to the user. The instantiator function determines

how discrepancies between the presentation specification

passed to the instantiator and the presentation specification

attached to the component are resolved. Currently, this

determination is not explicitly specified in the model.

In the model, in the runtime layer, an instantiation is

represented as:

[BASE_INSTANTIATION, LINK_MARKER]

25

The following figure defines the contents of an instantiated

component.

INSTANTIATION

base: BASE_INSTANTIATION

links: seq LINK_MARKER

linkAnchor: LINK_MARKER -» ANCHOR_ID

dom linkAnchor = ran links

Figure 10. Instantiation of a Component

26

During a session, the following operations can be

performed on a hypertext:

OPERATIONS OPEN | CLOSE | PRESENT | UNPRESENT |
CREATE | EDIT | SAVE | DELETE

A session, in the extended model, is represented in the

following figure.

=SESSION=

H : HYPERTEXT

history: seq OPERATION

instants : IID -** (INSTANTIATION x UID)

instantiator: UID x PRESENT_SPEC -* INSTANTIATION

realizer : INSTANTIATION -» COMPONENT

runTimeResolver : COMPONENT_SPEC -+* UID

usernameSpec : USER_NAME

passwordSpec : ENCRYPT_PASSWORD

head(history) = OPEN

V uid : UID; ps : PRESENTJSPEC |
uid S dom H.accessor

realizer(instantiator(uid,ps)) = H.accessor(uid)

H.resolver £ runtimeResolver

Figure 11. Contents of a Session

The runtime resolver is responsible for mapping a

component specification into a UID. In addition to the

information that the runtime resolver can access in a session:

information on the session and the history of actions, it will

27

also have access to the user names and passwords. Once a

session is open for a user to access a hypertext, the runtime

layer is responsible for supplying the user name and password.

This information is available to the resolver function which

maps the component specifications (usernameSpec and

passwordSpec) into a UID. The user name and password are

compared to the password entity containing valid user names

and passwords. If a match is found, the accessor function

returns the UID associated with the component requested by the

user. If no match is found, the accessor function returns the

UID of the component which denies the user access to the

component. Figure 12 shows the mapping specifications for the

proposed model.

28

j=Runtime Laye:

user name:

password:

rResolver Function-|

Maps user name

and password

into UID

UID is passed

to the Storage

Layer

f=Storage Layer=

User name and password are

compared to the database file

to determine entry access

1

lf=Valid Entry=

Accessor Function

maps the UID into

the component for

the correct entry

=Invalid

Accessor Function

maps the UID into

the component for

the incorrect entry

Figure 12. Security Implementation

3.3 Testing and Evaluations

The model of a prototype was evaluated through the

development of a prototype in the world wide web environment.

In the model, the security page was generated when the user

29

clicked on the hypertext symbol representing a link to a

private information object. Once the hypertext was accessed,

a page was generated for the user to enter a user name and

password. The user name and password were sent to the server

where they were compared against a database containing the

list of authorized users. If a correct entry was entered, the

requested page was presented. If an incorrect response was

entered, a document was generated requesting the user to try

again. This mechanism represents the prototype's ability to

supply the user name and password in the model's session

entity.

In the model, the user name and password are incorporated

into the runtime layer and passed to the storage layer;

however, for testing purposes in the world wide web

environment the user name and encrypted password are

incorporated during runtime and passed to the storage layer

where encryption is performed.

In the prototype model, observational testing was done to

evaluate the model. The test were generated in the world wide

web environment. A survey was given to fifteen users

containing a file of user names and passwords. The users were

asked to enter selections from the file and record the

results.

The results from the proposed model demonstrated that a

password based security mechanism can be implemented into an

existing hypermedia system. The prototype developed as an

30

extension of the Dexter Reference model, shows in the simplest

form how a security mechanism can be incorporated into a

system. With this mechanism in place, private information can

be stored on hypermedia systems.

In evaluating this approach there were some strengths and

weaknesses. The strengths were: no user was able to gain

access to the private information on the system with an

incorrect user name and password; however, those users with

valid entries were able to gain access.

A weakness of this approach was the limitation of having

a user name and password determine the access privileges for

the information. This was a very short test because either

the entries were correct, which provided access to the

requested information or incorrect, which terminated the

request.

The implementation for the prototype model used to

generate the password security mechanism is given in Appendix

B. The sample of the test data file is also given.

31

CHAPTER 4

CONCLUSION AND FUTURE WORK

In this chapter the summary and future work are

presented. In conclusion, key points that are essential for

the future developments for hypermedia systems are given.

4.1 Summary of Research

This research addressed the lack of password security in

current hypermedia models. Various hypermedia systems are

designed with little or no security mechanisms. This is a

concern to users interested in protecting crucial data from

the common user. Mechanisms used to protect private data from

being viewed by passive intruders should be provided for

network based systems.

A password based security mechanism was developed as an

extension to the Dexter Reference model to address this

problem. After comparing and contrasting among several

hypertext models, the Dexter model was chosen because of its

advantages. The Dexter model was designed for comparing and

contrasting the interchange and interoperability standards

found in various hypermedia systems, and is also the most

widely accepted hypertext model.

32

The research approach was to develop a security mechanism

based on hypertext links. A password entity containing valid

user names and passwords, was associated with the hypertext

links which provided access to the private data. A prototype

environment was developed for testing and evaluating the

results. The following gives a brief summary of this

research.

Chapter 1 provided an introduction to the concept of

hypertext and the various uses of hypermedia applications.

This is followed by the problem statement, design approach and

motivation for this research.

Chapter 2 contained relevant hypermedia models which lead

into a discussion of the Dexter Reference model. Security in

operating system and security methods were presented as the

basis for the proposed security model.

Chapter 3 described the development of the proposed

model. A description of the layers in the model were

discussed followed by the model prototype. The results

evaluating this research were given.

4.2 Future Work

In conclusion, this research examined the minimum

security features for a hypermedia system and answered

the question regarding lack of security in hypermedia systems.

The prototype developed addressed a password based approach to

solving the problem.

33

There are a few suggestions for future work for this

research that can impact upon the future design of hypermedia

systems. These suggestions are outlined as follows:

1. Incorporation of additional features such as

performing security on a global access. In the proposed

model, the password based mechanism only supports local access

to information. The security model is placed on nodes

associated with links to private information.

2. Modify the runtime layer of the prototype to avoid

the unencrypted passwords to be transmitted across the

network.

3. Design additional security features to guard against

the active intruder. The prototype model is designed to guard

against the passive intruder only.

In addition to the model prototype, these suggestions can

be made to alleviate the lack of security problem in the

development of future hypermedia systems.

34

APPENDIX A

TRADEMARKS USED

Interactive NOVA is a trademark of Apple Computers, Inc. WGBH

Educational Foundation, and Peace River Films, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

Xanadu is a trademark of the Xanadu Operating Company.

35

APPENDIX B

PROTOTYPE ENVIRONMENT

The link/node security mechanism will be integrated into

the storage layer in the Dexter model (Halasz 1989). The user

name and password will be the mechanism for the security

check. Once the user has entered the required information,

the user name and password are compared against the database

containing the valid user names and passwords. If a match is

detected, permission is granted to the user and the requested

information is presented. If there is no match, then the

unauthorized user is asked to backtrack to the previous node.

User names and passwords which are not present in the

data file, can only access the public information present on

the system. When the user name and password are entered

correctly, the authorized user is presented with the requested

information. This process continues until the user exits the

system.

The following programs generate the password security

mechanism.

36

/* HTML Document which generates a Home Page */

<html>

<head>

<TITLE>Tracey W. West</TITLE>

<link rev="made" href="mailto:twest@diamond.cau.auc.edu">

</head>

<body>

<hr>

<center>

<hl>Tracey W. West</hl>

</center>

Tracey W. West, Graduate Student

Department of Computer and Information Sciences

Clark Atlanta University

240 James P. Brawley Drive at Fair Street

Atlanta, Georgia 30314

email: twest@diamond.cau.auc.edu

<hr>

<h2>School</h2>

<hrxaddressxa href=http: //www. cau. auc. edu>Clark Atlanta

University</address></hr>

<h2>Advisors</h2><hr>

<menu>

<lixa href=http: //jasper. cau. auc. edu/Faculty/dsk/dave.htm>Dr.

David Kerven
Dr.

Radhakrishnan Srikanth

Dr. Erika Rogers

<HR>

We are working on setting up password based security for

hypermedia
documents.

</body>

</html>

37

/* Password Access file where user names and passwords are
checked for validation of private data files.

This model is still in the development stages

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "review.h"

main()

{
char password[30], name[30];

char *e■

char saitU = { 'o1, 'p'};
int pwf doc, user_name;

int len, i, cap, access;

FILE *ptr;

Pair inputs[500];

printf("Content-type: text/html%c%c",10,10);

printf("<html>\n<head>\n<title>Security Access Page

Test</title>\n");

printf("<1ink

rev=\"made\"href=\"mailto:twest@diamond.cau.auc.edu\">\n");
printf("</head>\n<body>\n");

if(strcmp(getenv("REQUEST_METHOD"),"POST")) {
printf("This script should be referenced with a METHOD of

POST.\n");

exit(l);

}

if(strcmp(getenv("CONTENT_TYPE"),"application/x-www-form-url

encoded")) {
printf("This script can only be used to decode form

results.\n");

exit(l);

len = atoi (getenv ("CONTENT_LENGTH"));

for (i = 0; len && (!feof(stdin));

inputs[i].attrib = build (256,'=',&len);

inputs[i].value = build (1024,'&•,&len);

if (!strcmp (inputs[i].attrib, "password"))

pw=i ;

if (!strcmp (inputs[i].attrib, "document"))

doc=i;

38

/* page 2 - Password Access File*/

if (Istrcmp (inputs[i].attrib, "name"))

user_name=i;

}
cap=i;

e = (char *) crypt(inputs[pw].value,salt);

if ((ptr = fopen ("/usr/local/httpd_exp/cgi-bin/datal",

"r")) == NULL)

printf("Error opening password file.\n")•

printf("Contact security administrator.\n");

printf ("</bodyx/html>") ;

access = 0;

while (fscanf (ptr, "%s%s11, name, password) != EOF)

if (strcmp (name, inputs[user_name].value) == 0)

if (strcmp (password, e) == 0)

access = 1;

printf ("Click <a href> here to view the requested

page.</pre></hrx/hl>\n") ;

if (access != 1)

printf ("<pre>\n<h2xhr>L0GIN INCORRECT, TRY AGAIN.</h2>

\n\n");

printf ("<h2xhr>Click <a

href=\"http://j asper.cau.auc.edu:8080/access\"
enctype=\"application/x-www-form-urlencoded\">

here to return to secure page.

</prex/hr></h2>\n") ;

rewind (ptr);

}

fclose (ptr);

39

/* Security Access Page where the user names and passwords are

entered

/*

#include <stdio.h>

main ()

{
char *document;

document=(char *)getenv("PATH_INFO");

printf("Content-type: text/html%c%c",10,10);

printf("<html>\n<head>\n<title>Security Access

Page</title>\n");

printf ("<link rev=\"made\"

href=\"mailto:twest@diamond.cau.auc.edu\">\n");
printf("</head>\n<body>\n");

if((!document) || (!document[0])){
printf("Error finding document.\n");

printf("</body>\n</html>\n");

printf("<hr>\n<hl>Access Page for %s</hl>",document+l);

printf ("<hr>\n<form tnethod=\"POST\"
action=\"http://jasper.cau.auc.edu:8080/cgi-bin/access\"
enctype=\Ilappl.ication/x-www--form-urlencoded\">\n") ;

printf("<input type=\"hidden\" name=\"document\"

value=\"%s\">\n",

document+1);

printf ("Please enter you user name and password.\n");
printf ("When you are finished, click submit.\n<p>\n");

printf("User Name :<input type=\"text\" size=25

name=\ " name\ " >\n ") ;
printf ("
\n Password:*:input type=\"password\"size=20

name=\"password\">\n");

printf("
\n<input type=\"reset\" value=\"Clear

Entries\">\n");
printf("<input type=\"submit\" value=\"Access

Document\">\n");

printf("</form>\n");
printf("<hr>\n<h6>Page Generated Automatically, contact

Tracey W. West ");
printf("(twest@diamond.cau.auc.edu) with any

questions.</h6>");

printf("</body>\n</html>\n");

40

/* Password Data file containing the secure document, valid

user names and encrypted passwords.

This is the sample test data file.

/*

first_secure twest opakS9olxszH.

first_secure bjones opZWClk03tc5M

first_secure cmcclain opboM78FNnQm6

first_secure tbeavers ope/YqU90oudM

first_secure ssmith opXlvYK2YIVTg

first_secure tluv opQnFqTv5cx32

first_secure dsk opZzSTLpgVyzw

first_secure erogers opjs/bBz5Hkv.

first secure srikanth mac-ixz

/* Mapfile entry containing the secure document and path. */

first_secure /usr/local/httpd_exp/cgi-bin/first_secure

41

REFERENCE LIST

Benimoff, N., and M. Burns. 1993. Multimedia User Interfaces
for Telecommunications Products and Services. At&T
Technical Journal. (May/June): 42-9.

Bowen, C. 1993. Open Sesame!. Home PC Magazine 2(3) (March):

117-24.

Bush, V. As We May Think. 1945. Atlantic Monthly 7 (July):

101-8.

Campbell, B., and J. Goodman. Ham: A General Purpose

Hypertext Abstract Machine. Communications of the ACM

31(7) (July): 856-61.

Gray, S. H. 1993. Hypertext and the Technology of Conversation

Orderly Situational Choice. Greenwood Press.

Hardman L., D. Bulterman, and G. Rossum. 1994. The Amsterdam

Hypermedia Model. Communications of the ACM (February):

50-62.

Halasz, F., and M. Schwartz. 1987. The Dexter Hypertext

Reference Model. Paper submitted to the NIST Hypertext

Standardization Workshop. NIST, 500-178.

Kahn, Paul and Normal Meyrowitz. 1988. Guide, HyperCard and

Intermedia: A Comparison of Hypertext/Hypermedia

Systems. IRIS Technical Report (May): 99-107.

Kerven, David. 1993. An Abstract Architecture for Distributed,

Object-Oriented Hypermedia Systems. Ph.D. diss., The

University of Southwestern Louisiana.

Kochan, S., and P. Wood. 1984. Exploring the UNIX System.

Hayden Books.

Martin, J. 1990. Hyperdocuments & How to Create Them.

Englewood Cliffs, NJ: Prentice Hall.

Nelson, T. H. 1990. Literary Machines. Mindfull Press.

Nielsen, J. 1990. The Art of Navigating Through Hypertext.
Communications of the ACM 33(3) (March): 296-310.

42

Nielsen, J. 1993. Hypertext & Hypermedia. Harcourt Brace &

Company, Publishers.

Shneiderman, B. 1989. Hypertext Hands-On!. Reading, Mass.:

Addison-Wesley Publishing Co.

Tanenbautn, A. S. 1987. Operating Systems: Design and

Implementation. Prentice Hall Publishers.

Wood, H. M. 1977. The Uses of Passwords for Controlled Access

to Computer Resources. National Bureau of Standards (NBS

Publication).

43

